Tafazzin 缺乏会导致巴氏综合征心肌病小鼠模型脂质体发生重大重塑。

Frontiers in molecular medicine Pub Date : 2024-04-29 eCollection Date: 2024-01-01 DOI:10.3389/fmmed.2024.1389456
Malte Hachmann, Güntas Gülcan, Ranjithkumar Rajendran, Marcus Höring, Gerhard Liebisch, Akash Bachhuka, Michael Kohlhaas, Christoph Maack, Süleyman Ergün, Jan Dudek, Srikanth Karnati
{"title":"Tafazzin 缺乏会导致巴氏综合征心肌病小鼠模型脂质体发生重大重塑。","authors":"Malte Hachmann, Güntas Gülcan, Ranjithkumar Rajendran, Marcus Höring, Gerhard Liebisch, Akash Bachhuka, Michael Kohlhaas, Christoph Maack, Süleyman Ergün, Jan Dudek, Srikanth Karnati","doi":"10.3389/fmmed.2024.1389456","DOIUrl":null,"url":null,"abstract":"<p><p>Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1389456"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285559/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy.\",\"authors\":\"Malte Hachmann, Güntas Gülcan, Ranjithkumar Rajendran, Marcus Höring, Gerhard Liebisch, Akash Bachhuka, Michael Kohlhaas, Christoph Maack, Süleyman Ergün, Jan Dudek, Srikanth Karnati\",\"doi\":\"10.3389/fmmed.2024.1389456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.</p>\",\"PeriodicalId\":73090,\"journal\":{\"name\":\"Frontiers in molecular medicine\",\"volume\":\"4 \",\"pages\":\"1389456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285559/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in molecular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fmmed.2024.1389456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fmmed.2024.1389456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巴特综合征(BTHS)是一种罕见的 X 连锁疾病,临床特征为心肌病、骨骼肌病、中性粒细胞减少和生长迟缓。BTHS是由磷脂酰基转移酶Tafazzin(基因:TAFAZZIN,TAZ)突变引起的。Tafazzin催化心磷脂(CL)重塑的最后一步,心磷脂是一种位于线粒体内膜的甘油磷脂。磷脂的组成在很大程度上决定了膜的特性,因此正确地生物合成 CL 和其他膜脂对线粒体功能至关重要。线粒体提供了心脏能量需求的 95%,特别是由于其在脂肪酸氧化中的作用。BTHS 中脂质平衡的改变会影响线粒体膜蛋白,从而导致心肌病。我们分析了转基因 TAFAZZIN 敲除(TAZ-KD)BTHS 小鼠模型,并使用电喷雾离子化串联质谱法(ESI-MS/MS)测定了 10 周龄和 50 周龄 TAZ-KD 和 WT 心脏中 193 种不同脂质的分布。我们的研究结果表明,TAZ-KD 组和 WT 组之间存在明显的脂质组成差异,这表明大多数分析的脂质种类都发生了基因型依赖性改变。在没有心肌病的幼年动物和患有心力衰竭的老年动物中都发现了心肌脂质体的显著变化。磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、溶血磷脂酰乙醇胺(LPE)、溶血磷脂酰胆碱(LPC)和质原种类发生了显著变化。在 TAZ-KD 小鼠体内,含有 2-4 个双键的 PC 种类明显增加,而多不饱和 PC 种类则明显减少。此外,含 PC 和 PE 种类的亚油酸(LA,18:2)以及含 PE 38:4 种类的花生四烯酸(AA,20:4)在 TAZ-KD 中也有所增加。我们发现含 AA 的 LPE 和基于 PE 的质粒(PE P-)水平更高。此外,我们首次发现了鞘磷脂(SM)和神经酰胺(Cer)脂质种类的显著变化。非常长链的SM种类在TAZ-KD心脏中积累,而长链的Cer和几种己基神经酰胺(HexCer)种类仅在50周大的TAZ-KD心脏中积累。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy.

Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DeltaRex-G, tumor targeted retrovector encoding a CCNG1 inhibitor, for CAR-T cell therapy induced cytokine release syndrome. Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy. Editorial: Mitochondrial dysfunction affects mechano-energetic coupling in heart failure Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy. Editorial: Celebrating the 200th mendel’s anniversary: gene-targeted diagnostics and therapies for cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1