Pub Date : 2025-01-08eCollection Date: 2024-01-01DOI: 10.3389/fmmed.2024.1492370
Ashley King, Davis Noblitt, Olivia Sherron, Clara Kjerfve, Lydia Pless, Nicholas L Truex
Interferon (IFN)-γ is a central regulator of cell-mediated immunity in human health and disease, but reduced expression of the target receptors impairs signaling activity and leads to immunotherapy resistance. Although intracellular expression of IFN-γ restores the signaling and downstream functions, we lack the tools to activate the IFNG gene instead of cell surface receptors. This paper introduces the design and characterization of an artificial transcription factor (ATF) protein that recognizes the IFNG gene with six zinc finger domains, which are dovetailed to a VP64 signaling domain that promotes gene transcription and translation. Biological studies with human Jurkat T cells reveal that the ATF amplifies IFNG gene transcription and translation, and also stimulates gene transcription for multiple class I and II HLA alleles and interferon-stimulated genes (ISGs). Biophysical characterization showed the recombinant ATF protein recognizes the human IFNG gene with nanomolar affinity (KD = 5.27 ± 0.3 nM), adopts a protein secondary structure associated with the ββα-fold of zinc finger domains, and is resistant to thermal denaturation. These studies demonstrate that transcriptional targeting of cytokine genes, rather than surface receptors, activates cytokine expression and shows significant potential for directing immune function.
{"title":"An artificial transcription factor that activates potent interferon-γ expression in human Jurkat T Cells.","authors":"Ashley King, Davis Noblitt, Olivia Sherron, Clara Kjerfve, Lydia Pless, Nicholas L Truex","doi":"10.3389/fmmed.2024.1492370","DOIUrl":"10.3389/fmmed.2024.1492370","url":null,"abstract":"<p><p>Interferon (IFN)-γ is a central regulator of cell-mediated immunity in human health and disease, but reduced expression of the target receptors impairs signaling activity and leads to immunotherapy resistance. Although intracellular expression of IFN-γ restores the signaling and downstream functions, we lack the tools to activate the <i>IFNG</i> gene instead of cell surface receptors. This paper introduces the design and characterization of an artificial transcription factor (ATF) protein that recognizes the <i>IFNG</i> gene with six zinc finger domains, which are dovetailed to a VP64 signaling domain that promotes gene transcription and translation. Biological studies with human Jurkat T cells reveal that the ATF amplifies <i>IFNG</i> gene transcription and translation, and also stimulates gene transcription for multiple class I and II HLA alleles and interferon-stimulated genes (ISGs). Biophysical characterization showed the recombinant ATF protein recognizes the human <i>IFNG</i> gene with nanomolar affinity (K<sub>D</sub> = 5.27 ± 0.3 nM), adopts a protein secondary structure associated with the ββα-fold of zinc finger domains, and is resistant to thermal denaturation. These studies demonstrate that transcriptional targeting of cytokine genes, rather than surface receptors, activates cytokine expression and shows significant potential for directing immune function.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1492370"},"PeriodicalIF":0.0,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751033/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143024817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06eCollection Date: 2024-01-01DOI: 10.3389/fmmed.2024.1487526
Caroline Schoenherr, Stefan Pietzsch, Cristina Barca, Franziska E Müller, Frauke S Bahr, Martina Kasten, Andre Zeug, Sergej Erschow, Christine S Falk, Evgeni Ponimaskin, James T Thackeray, Denise Hilfiker-Kleiner, Melanie Ricke-Hoch
Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs). The reversible melanoma cancer mouse model (B16F10 cells stably expressing a ganciclovir (GCV)-inducible suicide gene in C57BL/6N mice: B16F10-GCV) allows chemotherapy-free tumor elimination in advanced disease stage and demonstrates almost complete recovery of the mouse heart from cancer-induced atrophy, molecular impairment and heart failure. Thus, enabling the study of anti-cancer-therapy effects. Here, we analyzed potential cardiac side effects of antibody-mediated PD-L1 inhibition in the preclinical B16F10-GCV mouse model after tumor elimination and 2 weeks recovery (50 days after tumor inoculation). Anti-PD-L1 treatment was associated with improved survival as compared to isotype control (Ctrl) treated mice. Surviving anti-PD-L1 and Ctrl mice showed similar cardiac function, dimensions and the expression of cardiac stress and hypertrophy markers. Although anti-PD-L1 treatment was associated with increased troponin I type 3 cardiac (TNNI3) blood levels, cardiac mRNA expression of macrophage markers and elevated cardiac levels of secreted inflammatory factors compared to Ctrl treatment, both groups showed a comparable density of inflammatory cells in the heart (using CXCR4-ligand 68Ga-Pentixafor in PET-CT and immunohistochemistry). Thus, anti-PD-L1 therapy improved survival in mice with advanced melanoma cancer with no major cardiac phenotype or inflammation 50 days after tumor inoculation. Without a second hit that triggers the inflammatory response, anti-PD-L1 treatment appears to be safe for the heart in the preclinical melanoma mouse model.
{"title":"Immune-checkpoint-inhibitor therapy directed against PD-L1 is tolerated in the heart without manifestation of cardiac inflammation in a preclinical reversible melanoma mouse model.","authors":"Caroline Schoenherr, Stefan Pietzsch, Cristina Barca, Franziska E Müller, Frauke S Bahr, Martina Kasten, Andre Zeug, Sergej Erschow, Christine S Falk, Evgeni Ponimaskin, James T Thackeray, Denise Hilfiker-Kleiner, Melanie Ricke-Hoch","doi":"10.3389/fmmed.2024.1487526","DOIUrl":"10.3389/fmmed.2024.1487526","url":null,"abstract":"<p><p>Immune-checkpoint-inhibitors (ICI) target key regulators of the immune system expressed by cancer cells that mask those from recognition by the immune system. They have improved the outcome for patients with various cancer types, such as melanoma. ICI-based therapy is frequently accompanied by immune-related adverse side effects (IRAEs). The reversible melanoma cancer mouse model (B16F10 cells stably expressing a ganciclovir (GCV)-inducible suicide gene in C57BL/6N mice: B16F10-GCV) allows chemotherapy-free tumor elimination in advanced disease stage and demonstrates almost complete recovery of the mouse heart from cancer-induced atrophy, molecular impairment and heart failure. Thus, enabling the study of anti-cancer-therapy effects. Here, we analyzed potential cardiac side effects of antibody-mediated PD-L1 inhibition in the preclinical B16F10-GCV mouse model after tumor elimination and 2 weeks recovery (50 days after tumor inoculation). Anti-PD-L1 treatment was associated with improved survival as compared to isotype control (Ctrl) treated mice. Surviving anti-PD-L1 and Ctrl mice showed similar cardiac function, dimensions and the expression of cardiac stress and hypertrophy markers. Although anti-PD-L1 treatment was associated with increased troponin I type 3 cardiac (TNNI3) blood levels, cardiac mRNA expression of macrophage markers and elevated cardiac levels of secreted inflammatory factors compared to Ctrl treatment, both groups showed a comparable density of inflammatory cells in the heart (using CXCR4-ligand <sup>68</sup>Ga-Pentixafor in PET-CT and immunohistochemistry). Thus, anti-PD-L1 therapy improved survival in mice with advanced melanoma cancer with no major cardiac phenotype or inflammation 50 days after tumor inoculation. Without a second hit that triggers the inflammatory response, anti-PD-L1 treatment appears to be safe for the heart in the preclinical melanoma mouse model.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1487526"},"PeriodicalIF":0.0,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743445/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143017470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27eCollection Date: 2024-01-01DOI: 10.3389/fmmed.2024.1465647
Wieland B Huttner
{"title":"Human-specific gene <i>ARHGAP11B</i>-potentially an additional tool in the treatment of neurodegenerative diseases?","authors":"Wieland B Huttner","doi":"10.3389/fmmed.2024.1465647","DOIUrl":"10.3389/fmmed.2024.1465647","url":null,"abstract":"","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1465647"},"PeriodicalIF":0.0,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142815098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.3389/fmmed.2024.1461151
Grace Haroun, Erlinda M Gordon
Cytokine release syndrome is a serious complication of chimeric antigen receptor-T cell therapy and is triggered by excessive secretion of inflammatory cytokines by chimeric T cells which could be fatal. Following an inquiry into the molecular mechanisms orchestrating cytokine release syndrome, we hypothesize that DeltaRex-G, a tumor targeted retrovector encoding a cytocidal CCNG1 inhibitor gene, may be a viable treatment option for corticosteroid-resistant cytokine release syndrome. DeltaRex-G received United States Food and Drug Administration Emergency Use Authorization to treat Covid-19-induced acute respiratory distress syndrome, which is due to hyperactivated immune cells. A brief administration of DeltaRex-G would inhibit a certain proportion of hyperactive chimeric T cells, consequently reducing cytokine release while retaining chimeric T cell efficacy.
细胞因子释放综合征是嵌合抗原受体-T 细胞疗法的一种严重并发症,由嵌合 T 细胞过度分泌炎症细胞因子引发,可能致命。在对细胞因子释放综合征的分子机制进行研究后,我们假设,DeltaRex-G(一种编码细胞杀伤性 CCNG1 抑制剂基因的肿瘤靶向逆转录载体)可能是治疗皮质类固醇耐药细胞因子释放综合征的一种可行方法。DeltaRex-G 获得了美国食品和药物管理局的紧急使用授权,可用于治疗 Covid-19 引发的急性呼吸窘迫综合征,这种综合征是由过度激活的免疫细胞引起的。短暂服用 DeltaRex-G 可抑制一定比例的高活性嵌合 T 细胞,从而减少细胞因子的释放,同时保持嵌合 T 细胞的功效。
{"title":"DeltaRex-G, tumor targeted retrovector encoding a CCNG1 inhibitor, for CAR-T cell therapy induced cytokine release syndrome.","authors":"Grace Haroun, Erlinda M Gordon","doi":"10.3389/fmmed.2024.1461151","DOIUrl":"10.3389/fmmed.2024.1461151","url":null,"abstract":"<p><p>Cytokine release syndrome is a serious complication of chimeric antigen receptor-T cell therapy and is triggered by excessive secretion of inflammatory cytokines by chimeric T cells which could be fatal. Following an inquiry into the molecular mechanisms orchestrating cytokine release syndrome, we hypothesize that DeltaRex-G, a tumor targeted retrovector encoding a cytocidal CCNG1 inhibitor gene, may be a viable treatment option for corticosteroid-resistant cytokine release syndrome. DeltaRex-G received United States Food and Drug Administration Emergency Use Authorization to treat Covid-19-induced acute respiratory distress syndrome, which is due to hyperactivated immune cells. A brief administration of DeltaRex-G would inhibit a certain proportion of hyperactive chimeric T cells, consequently reducing cytokine release while retaining chimeric T cell efficacy.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1461151"},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445129/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.
主要的表观遗传变化与致癌有关,包括 DNA 甲基化异常和组蛋白翻译后修饰。事实上,近年来积累的证据表明,失活的 DNA 高甲基化主要针对多聚酶组基因(PcG)子集,这些基因是发育过程的调节器。相反,激活的DNA低甲基化则以致癌信号通路基因为目标,但这两种事件的结果都会导致致癌信号通路的过度表达,从而导致癌细胞的干样状态。根据基于人群的临床和实验研究的最新证据,我们假设与血液系统恶性肿瘤(HM)发病风险相关的因素,如代谢综合征和慢性炎症,可能会触发表观遗传机制,从而增加致癌基因的转录表达并激活致癌信号通路。与此类风险因素相关的信号通路包括但不限于促炎性核因子κB(NF-κB)和细胞内非受体酪氨酸激酶触发的有丝分裂、生长和存活的 Janus 激酶(JAK)通路。后者包括转录转换和激活因子(STAT)、Ras GTPases/丝裂原活化蛋白激酶(MAPKs)/细胞外信号相关激酶(ERKs)、磷脂酰肌醇 3-激酶(PI3K)/Akt/雷帕霉素哺乳动物靶标(mTOR)和β-catenin通路等信号通路。本文总结并讨论了在癌症和 HMs 生物学中起作用的表观遗传机制的最新发现及其在这些疾病的病因和发病机制中的重要性。此外,还探讨了表观遗传过程在确定生物特征中的作用、疾病临床特征的个体差异后果以及表观遗传药物在 HMs 中的应用潜力。
{"title":"Role of epigenetic in cancer biology, in hematologic malignancies and in anticancer therapy.","authors":"Armel Hervé Nwabo Kamdje, Hervet Paulain Dongmo Fogang, Patrice N Mimche","doi":"10.3389/fmmed.2024.1426454","DOIUrl":"10.3389/fmmed.2024.1426454","url":null,"abstract":"<p><p>Major epigenetic changes are associated with carcinogenesis, including aberrant DNA methylations and post-translational modifications of histone. Indeed evidence accumulated in recent years indicates that inactivating DNA hypermethylation preferentially targets the subset of polycomb group (PcG) genes that are regulators of developmental processes. Conversely, activating DNA hypomethylation targets oncogenic signaling pathway genes, but outcomes of both events lead in the overexpression of oncogenic signaling pathways that contribute to the stem-like state of cancer cells. On the basis of recent evidence from population-basedclinical and experimental studies, we hypothesize that factors associated with risk for developing a hematologic malignancy (HM), such as metabolic syndrome and chronic inflammation, may trigger epigenetic mechanisms to increase the transcriptional expression of oncogenes and activate oncogenic signaling pathways. Signaling pathways associated with such risk factors include but are not limited to pro-inflammatory nuclear factor κB (NF-κB) and mitogenic, growth, and survival Janus kinase (JAK) intracellular non-receptor tyrosine kinase-triggered pathways. The latter includes signaling pathways such as transducer and activator of transcription (STAT), Ras GTPases/mitogen-activated protein kinases (MAPKs)/extracellular signal-related kinases (ERKs), phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), and β-catenin pathways. Recent findings on epigenetic mechanisms at work in the biology of cancer and in HMs and their importance in the etiology and pathogenesis of these diseases are herein summarized and discussed. Furthermore, the role of epigenetic processes in the determination of biological identity, the consequences for interindividual variability in disease clinical profile, and the potential of epigenetic drugs in HMs are also considered.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1426454"},"PeriodicalIF":0.0,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-29eCollection Date: 2024-01-01DOI: 10.3389/fmmed.2024.1389456
Malte Hachmann, Güntas Gülcan, Ranjithkumar Rajendran, Marcus Höring, Gerhard Liebisch, Akash Bachhuka, Michael Kohlhaas, Christoph Maack, Süleyman Ergün, Jan Dudek, Srikanth Karnati
Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.
巴特综合征(BTHS)是一种罕见的 X 连锁疾病,临床特征为心肌病、骨骼肌病、中性粒细胞减少和生长迟缓。BTHS是由磷脂酰基转移酶Tafazzin(基因:TAFAZZIN,TAZ)突变引起的。Tafazzin催化心磷脂(CL)重塑的最后一步,心磷脂是一种位于线粒体内膜的甘油磷脂。磷脂的组成在很大程度上决定了膜的特性,因此正确地生物合成 CL 和其他膜脂对线粒体功能至关重要。线粒体提供了心脏能量需求的 95%,特别是由于其在脂肪酸氧化中的作用。BTHS 中脂质平衡的改变会影响线粒体膜蛋白,从而导致心肌病。我们分析了转基因 TAFAZZIN 敲除(TAZ-KD)BTHS 小鼠模型,并使用电喷雾离子化串联质谱法(ESI-MS/MS)测定了 10 周龄和 50 周龄 TAZ-KD 和 WT 心脏中 193 种不同脂质的分布。我们的研究结果表明,TAZ-KD 组和 WT 组之间存在明显的脂质组成差异,这表明大多数分析的脂质种类都发生了基因型依赖性改变。在没有心肌病的幼年动物和患有心力衰竭的老年动物中都发现了心肌脂质体的显著变化。磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、溶血磷脂酰乙醇胺(LPE)、溶血磷脂酰胆碱(LPC)和质原种类发生了显著变化。在 TAZ-KD 小鼠体内,含有 2-4 个双键的 PC 种类明显增加,而多不饱和 PC 种类则明显减少。此外,含 PC 和 PE 种类的亚油酸(LA,18:2)以及含 PE 38:4 种类的花生四烯酸(AA,20:4)在 TAZ-KD 中也有所增加。我们发现含 AA 的 LPE 和基于 PE 的质粒(PE P-)水平更高。此外,我们首次发现了鞘磷脂(SM)和神经酰胺(Cer)脂质种类的显著变化。非常长链的SM种类在TAZ-KD心脏中积累,而长链的Cer和几种己基神经酰胺(HexCer)种类仅在50周大的TAZ-KD心脏中积累。
{"title":"Tafazzin deficiency causes substantial remodeling in the lipidome of a mouse model of Barth Syndrome cardiomyopathy.","authors":"Malte Hachmann, Güntas Gülcan, Ranjithkumar Rajendran, Marcus Höring, Gerhard Liebisch, Akash Bachhuka, Michael Kohlhaas, Christoph Maack, Süleyman Ergün, Jan Dudek, Srikanth Karnati","doi":"10.3389/fmmed.2024.1389456","DOIUrl":"10.3389/fmmed.2024.1389456","url":null,"abstract":"<p><p>Barth Syndrome (BTHS) is a rare X-linked disease, characterized clinically by cardiomyopathy, skeletal myopathy, neutropenia, and growth retardation. BTHS is caused by mutations in the phospholipid acyltransferase tafazzin (Gene: TAFAZZIN, TAZ). Tafazzin catalyzes the final step in the remodeling of cardiolipin (CL), a glycerophospholipid located in the inner mitochondrial membrane. As the phospholipid composition strongly determines membrane properties, correct biosynthesis of CL and other membrane lipids is essential for mitochondrial function. Mitochondria provide 95% of the energy demand in the heart, particularly due to their role in fatty acid oxidation. Alterations in lipid homeostasis in BTHS have an impact on mitochondrial membrane proteins and thereby contribute to cardiomyopathy. We analyzed a transgenic TAFAZZIN-knockdown (TAZ-KD) BTHS mouse model and determined the distribution of 193 individual lipid species in TAZ-KD and WT hearts at 10 and 50 weeks of age, using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Our results revealed significant lipid composition differences between the TAZ-KD and WT groups, indicating genotype-dependent alterations in most analyzed lipid species. Significant changes in the myocardial lipidome were identified in both young animals without cardiomyopathy and older animals with heart failure. Notable alterations were found in phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC) and plasmalogen species. PC species with 2-4 double bonds were significantly increased, while polyunsaturated PC species showed a significant decrease in TAZ-KD mice. Furthermore, Linoleic acid (LA, 18:2) containing PC and PE species, as well as arachidonic acid (AA, 20:4) containing PE 38:4 species are increased in TAZ-KD. We found higher levels of AA containing LPE and PE-based plasmalogens (PE P-). Furthermore, we are the first to show significant changes in sphingomyelin (SM) and ceramide (Cer) lipid species Very long-chained SM species are accumulating in TAZ-KD hearts, whereas long-chained Cer and several hexosyl ceramides (HexCer) species accumulate only in 50-week-old TAZ-KD hearts These findings offer potential avenues for the diagnosis and treatment of BTHS, presenting new possibilities for therapeutic approaches.</p>","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"4 ","pages":"1389456"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-27DOI: 10.3389/fmmed.2024.1366963
Noah Federman, Erlinda M. Gordon, S. Chawla, Frederick L. Hall
{"title":"Editorial: Celebrating the 200th mendel’s anniversary: gene-targeted diagnostics and therapies for cancer","authors":"Noah Federman, Erlinda M. Gordon, S. Chawla, Frederick L. Hall","doi":"10.3389/fmmed.2024.1366963","DOIUrl":"https://doi.org/10.3389/fmmed.2024.1366963","url":null,"abstract":"","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"80 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140427063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-01DOI: 10.3389/fmmed.2024.1310002
Alfredo Colina, Viren Shah, Ravi K. Shah, Tanya Kozlik, R. K. Dash, Scott S. Terhune, Anthony E. Zamora
Since the FDA’s approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.
自2017年美国食品药品管理局批准嵌合抗原受体(CAR)T细胞以来,嵌合抗原受体构建体的设计和CAR T细胞疗法的制造都有了重大改进,从而提高了体内CAR T细胞的持久性,改善了某些血液恶性肿瘤的临床疗效。尽管在一些患者身上看到了明显的临床反应,但在实现长期持久无瘤生存、减少治疗相关恶性肿瘤和毒性以及扩大这种治疗模式可治疗的癌症类型等方面仍然存在挑战。要解决这些不足,最重要的是要认真分析区分有效和次优 CAR T 细胞反应的生物因素。随着实验方法、单细胞技术和计算资源等工具箱的不断扩大,人们对发现新方法来简化 CAR T 细胞新产品的开发和验证工作产生了浓厚的兴趣。通过将这些方法纳入转化和临床工作流程,可以开发出更好、更准确的预后和预测模型,为临床决策提供指导和信息。在本综述中,我们简要概述了 CAR T 细胞制造的最新进展,并介绍了用于选择性扩增特定表型亚群的策略。此外,我们还回顾了评估 CAR T 细胞功能的实验方法,并总结了目前有可能改善 CAR T 细胞制造和预测临床结果的硅学方法。
{"title":"Current advances in experimental and computational approaches to enhance CAR T cell manufacturing protocols and improve clinical efficacy","authors":"Alfredo Colina, Viren Shah, Ravi K. Shah, Tanya Kozlik, R. K. Dash, Scott S. Terhune, Anthony E. Zamora","doi":"10.3389/fmmed.2024.1310002","DOIUrl":"https://doi.org/10.3389/fmmed.2024.1310002","url":null,"abstract":"Since the FDA’s approval of chimeric antigen receptor (CAR) T cells in 2017, significant improvements have been made in the design of chimeric antigen receptor constructs and in the manufacturing of CAR T cell therapies resulting in increased in vivo CAR T cell persistence and improved clinical outcome in certain hematological malignancies. Despite the remarkable clinical response seen in some patients, challenges remain in achieving durable long-term tumor-free survival, reducing therapy associated malignancies and toxicities, and expanding on the types of cancers that can be treated with this therapeutic modality. Careful analysis of the biological factors demarcating efficacious from suboptimal CAR T cell responses will be of paramount importance to address these shortcomings. With the ever-expanding toolbox of experimental approaches, single-cell technologies, and computational resources, there is renowned interest in discovering new ways to streamline the development and validation of new CAR T cell products. Better and more accurate prognostic and predictive models can be developed to help guide and inform clinical decision making by incorporating these approaches into translational and clinical workflows. In this review, we provide a brief overview of recent advancements in CAR T cell manufacturing and describe the strategies used to selectively expand specific phenotypic subsets. Additionally, we review experimental approaches to assess CAR T cell functionality and summarize current in silico methods which have the potential to improve CAR T cell manufacturing and predict clinical outcomes.","PeriodicalId":73090,"journal":{"name":"Frontiers in molecular medicine","volume":"15 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139687814","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}