通过断层扫描引导的系统设计实现二氧化碳减排的可扩展性和稳定性

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-10-16 DOI:10.1016/j.joule.2024.07.004
{"title":"通过断层扫描引导的系统设计实现二氧化碳减排的可扩展性和稳定性","authors":"","doi":"10.1016/j.joule.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div>Electrocatalytic CO<sub>2</sub> reduction offers a means to produce value-added multi-carbon products and mitigate CO<sub>2</sub> emissions. However, the stability of CO<sub>2</sub> electrolyzers for C<sub>2+</sub> products has not exceeded 200 h—well below that of CO- and H<sub>2</sub>-producing electrolyzers—and the most stable systems employ low-conductivity substrates incompatible with scale. Current gas diffusion electrodes (GDEs) become filled with salt precipitate and electrolyte, which limits CO<sub>2</sub> availability at the catalyst beyond 30 h. We develop a GDE architecture that is resistant to flooding and maintains stable performance for &gt;400 h. Using a combination of focused ion beam scanning electron microscopy, micro-computed tomography, and a purpose-built array tomography technique, we determine that the enhanced stability is due to a percolating network of polytetrafluoroethylene in the microporous layer that retains hydrophobicity. We scale this approach in an 800 cm<sup>2</sup> cell and an 8,000 cm<sup>2</sup> stack and transfer &gt;10<sup>8</sup> C, the largest reported CO<sub>2</sub> electrolysis demonstration.</div></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalability and stability in CO2 reduction via tomography-guided system design\",\"authors\":\"\",\"doi\":\"10.1016/j.joule.2024.07.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Electrocatalytic CO<sub>2</sub> reduction offers a means to produce value-added multi-carbon products and mitigate CO<sub>2</sub> emissions. However, the stability of CO<sub>2</sub> electrolyzers for C<sub>2+</sub> products has not exceeded 200 h—well below that of CO- and H<sub>2</sub>-producing electrolyzers—and the most stable systems employ low-conductivity substrates incompatible with scale. Current gas diffusion electrodes (GDEs) become filled with salt precipitate and electrolyte, which limits CO<sub>2</sub> availability at the catalyst beyond 30 h. We develop a GDE architecture that is resistant to flooding and maintains stable performance for &gt;400 h. Using a combination of focused ion beam scanning electron microscopy, micro-computed tomography, and a purpose-built array tomography technique, we determine that the enhanced stability is due to a percolating network of polytetrafluoroethylene in the microporous layer that retains hydrophobicity. We scale this approach in an 800 cm<sup>2</sup> cell and an 8,000 cm<sup>2</sup> stack and transfer &gt;10<sup>8</sup> C, the largest reported CO<sub>2</sub> electrolysis demonstration.</div></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124003064\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124003064","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

电催化二氧化碳还原为生产高附加值的多碳产品和减少二氧化碳排放提供了一种方法。然而,生产 C2+ 产品的二氧化碳电解槽的稳定性尚未超过 200 小时,远远低于生产 CO 和 H2 的电解槽的稳定性,而且最稳定的系统采用的是与规模不相容的低导电率基质。利用聚焦离子束扫描电子显微镜、微观计算机断层扫描和专门设计的阵列断层扫描技术,我们确定稳定性增强的原因是微孔层中的聚四氟乙烯渗流网络保持了疏水性。我们在一个 800 平方厘米的电池和一个 8,000 平方厘米的堆栈中推广了这种方法,并转移了 108 C 的二氧化碳,这是目前报道的最大的二氧化碳电解演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalability and stability in CO2 reduction via tomography-guided system design
Electrocatalytic CO2 reduction offers a means to produce value-added multi-carbon products and mitigate CO2 emissions. However, the stability of CO2 electrolyzers for C2+ products has not exceeded 200 h—well below that of CO- and H2-producing electrolyzers—and the most stable systems employ low-conductivity substrates incompatible with scale. Current gas diffusion electrodes (GDEs) become filled with salt precipitate and electrolyte, which limits CO2 availability at the catalyst beyond 30 h. We develop a GDE architecture that is resistant to flooding and maintains stable performance for >400 h. Using a combination of focused ion beam scanning electron microscopy, micro-computed tomography, and a purpose-built array tomography technique, we determine that the enhanced stability is due to a percolating network of polytetrafluoroethylene in the microporous layer that retains hydrophobicity. We scale this approach in an 800 cm2 cell and an 8,000 cm2 stack and transfer >108 C, the largest reported CO2 electrolysis demonstration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Clean energy demand must secure sustainable nickel supply Electro-biodiesel empowered by co-design of microorganism and electrocatalysis Distributions and evolution of trap states in non-fullerene organic solar cells Electro-controlled distribution of reducing equivalents to boost isobutanol biosynthesis in microbial electro-fermentation of S. oneidensis Metal-ligand redox in layered oxide cathodes for Li-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1