颜色空间用于操作和评估颜色与调色板的 Python 工具箱

Reto Stauffer, Achim Zeileis
{"title":"颜色空间用于操作和评估颜色与调色板的 Python 工具箱","authors":"Reto Stauffer, Achim Zeileis","doi":"arxiv-2407.19921","DOIUrl":null,"url":null,"abstract":"The Python colorspace package provides a toolbox for mapping between\ndifferent color spaces which can then be used to generate a wide range of\nperceptually-based color palettes for qualitative or quantitative (sequential\nor diverging) information. These palettes (as well as any other sets of colors)\ncan be visualized, assessed, and manipulated in various ways, e.g., by color\nswatches, emulating the effects of color vision deficiencies, or depicting the\nperceptual properties. Finally, the color palettes generated by the package can\nbe easily integrated into standard visualization workflows in Python, e.g.,\nusing matplotlib, seaborn, or plotly.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes\",\"authors\":\"Reto Stauffer, Achim Zeileis\",\"doi\":\"arxiv-2407.19921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Python colorspace package provides a toolbox for mapping between\\ndifferent color spaces which can then be used to generate a wide range of\\nperceptually-based color palettes for qualitative or quantitative (sequential\\nor diverging) information. These palettes (as well as any other sets of colors)\\ncan be visualized, assessed, and manipulated in various ways, e.g., by color\\nswatches, emulating the effects of color vision deficiencies, or depicting the\\nperceptual properties. Finally, the color palettes generated by the package can\\nbe easily integrated into standard visualization workflows in Python, e.g.,\\nusing matplotlib, seaborn, or plotly.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19921\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Python 色彩空间软件包提供了一个在不同色彩空间之间进行映射的工具箱,可用于生成各种基于感知的调色板,以获取定性或定量(连续或发散)信息。这些调色板(以及任何其他颜色集)可以通过各种方式进行可视化、评估和操作,例如,通过配色、模拟色觉缺陷的影响或描述感知特性。最后,软件包生成的调色板可以轻松集成到 Python 的标准可视化工作流中,例如使用 matplotlib、seaborn 或 plotly。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
colorspace: A Python Toolbox for Manipulating and Assessing Colors and Palettes
The Python colorspace package provides a toolbox for mapping between different color spaces which can then be used to generate a wide range of perceptually-based color palettes for qualitative or quantitative (sequential or diverging) information. These palettes (as well as any other sets of colors) can be visualized, assessed, and manipulated in various ways, e.g., by color swatches, emulating the effects of color vision deficiencies, or depicting the perceptual properties. Finally, the color palettes generated by the package can be easily integrated into standard visualization workflows in Python, e.g., using matplotlib, seaborn, or plotly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1