在常压空气中大规模合成过渡金属二钙化物

IF 7.9 2区 综合性期刊 Q1 CHEMISTRY, MULTIDISCIPLINARY Cell Reports Physical Science Pub Date : 2024-07-30 DOI:10.1016/j.xcrp.2024.102124
{"title":"在常压空气中大规模合成过渡金属二钙化物","authors":"","doi":"10.1016/j.xcrp.2024.102124","DOIUrl":null,"url":null,"abstract":"<p>Transition metal dichalcogenides (TMDs) have received considerable attention in recent years because of their intriguing chemical and physical properties. However, conventional synthesis methods, including chemical vapor deposition and wet-chemical synthesis, still face many challenges in mass production. Here, we develop a dynamic salt capsulation method to massively prepare TMDs (MoS<sub>2</sub>, WS<sub>2</sub>) at atmospheric pressure in air with a high yield of over 95%. With the help of binary salts (KCl, KBr), TMDs can be easily obtained for a short reaction time of 1 h at a relatively low temperature (400°C). The as-synthesized MoS<sub>2</sub> powders show flower-like nanospheres, which exhibit a desired catalytic performance in hydrogen evolution reactions and good electrochemical performance as anode materials in lithium-ion batteries. This work provides a simple method to synthesize high-quality and large quantities of TMDs with low cost and time consumption, which has a great potential to integrate into industrial production.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale synthesis of transition metal dichalcogenides at atmospheric pressure in air\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Transition metal dichalcogenides (TMDs) have received considerable attention in recent years because of their intriguing chemical and physical properties. However, conventional synthesis methods, including chemical vapor deposition and wet-chemical synthesis, still face many challenges in mass production. Here, we develop a dynamic salt capsulation method to massively prepare TMDs (MoS<sub>2</sub>, WS<sub>2</sub>) at atmospheric pressure in air with a high yield of over 95%. With the help of binary salts (KCl, KBr), TMDs can be easily obtained for a short reaction time of 1 h at a relatively low temperature (400°C). The as-synthesized MoS<sub>2</sub> powders show flower-like nanospheres, which exhibit a desired catalytic performance in hydrogen evolution reactions and good electrochemical performance as anode materials in lithium-ion batteries. This work provides a simple method to synthesize high-quality and large quantities of TMDs with low cost and time consumption, which has a great potential to integrate into industrial production.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102124\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102124","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

近年来,过渡金属二卤化物(TMDs)因其引人入胜的化学和物理特性而受到广泛关注。然而,包括化学气相沉积和湿化学合成在内的传统合成方法在大规模生产中仍面临诸多挑战。在此,我们开发了一种动态盐封方法,可在常压空气中大规模制备 TMDs(MoS2、WS2),产率高达 95% 以上。借助二元盐(KCl、KBr),在相对较低的温度(400°C)下,只需 1 小时的短反应时间,即可轻松获得 TMD。合成的 MoS2 粉末呈花朵状纳米球,在氢气进化反应中具有理想的催化性能,作为锂离子电池的负极材料具有良好的电化学性能。这项工作提供了一种低成本、低耗时、高质量、大量合成 TMDs 的简单方法,具有融入工业生产的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale synthesis of transition metal dichalcogenides at atmospheric pressure in air

Transition metal dichalcogenides (TMDs) have received considerable attention in recent years because of their intriguing chemical and physical properties. However, conventional synthesis methods, including chemical vapor deposition and wet-chemical synthesis, still face many challenges in mass production. Here, we develop a dynamic salt capsulation method to massively prepare TMDs (MoS2, WS2) at atmospheric pressure in air with a high yield of over 95%. With the help of binary salts (KCl, KBr), TMDs can be easily obtained for a short reaction time of 1 h at a relatively low temperature (400°C). The as-synthesized MoS2 powders show flower-like nanospheres, which exhibit a desired catalytic performance in hydrogen evolution reactions and good electrochemical performance as anode materials in lithium-ion batteries. This work provides a simple method to synthesize high-quality and large quantities of TMDs with low cost and time consumption, which has a great potential to integrate into industrial production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Physical Science
Cell Reports Physical Science Energy-Energy (all)
CiteScore
11.40
自引率
2.20%
发文量
388
审稿时长
62 days
期刊介绍: Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.
期刊最新文献
Paper microfluidic sentinel sensors enable rapid and on-site wastewater surveillance in community settings Catalyzing deep decarbonization with federated battery diagnosis and prognosis for better data management in energy storage systems 4.8-V all-solid-state garnet-based lithium-metal batteries with stable interface Deformation of collagen-based tissues investigated using a systematic review and meta-analysis of synchrotron x-ray scattering studies Catalysis for plastic deconstruction and upcycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1