{"title":"GAXG:用于解释图神经网络的全局和自适应最优图拓扑生成框架","authors":"Xiaofeng Liu;Chenqi Guo;Mingjun Zhao;Yinglong Ma","doi":"10.1109/TNSE.2024.3435839","DOIUrl":null,"url":null,"abstract":"Numerous explainability techniques have been developed to reveal the prediction principles of Graph Neural Networks (GNNs) across diverse domains. However, many existing approaches, particularly those concentrating on model-level explanations, tend to grapple with the tunnel vision problem, leading to less-than-optimal outcomes and constraining users' comprehensive understanding of GNNs. Furthermore, these methods typically require hyperparameters to mold the explanations, introducing unintended human biases. In response, we present GAXG, a global and self-adaptive optimal graph topology generation framework for explaining GNNs' prediction principles at model-level. GAXG addresses the challenges of tunnel vision and hyperparameter reliance by integrating a strategically tailored Monte Carlo Tree Search (MCTS) algorithm. Notably, our tailored MCTS algorithm is modified to incorporate an Edge Mask Learning and Simulated Annealing-based subgraph screening strategy during the expansion phase, resolving the inherent time-consuming challenges of the tailored MCTS and enhancing the quality of the generated explanatory graph topologies. Experimental results underscore GAXG's effectiveness in discovering global explanations for GNNs, outperforming leading explainers on most evaluation metrics.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6007-6023"},"PeriodicalIF":6.7000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GAXG: A Global and Self-Adaptive Optimal Graph Topology Generation Framework for Explaining Graph Neural Networks\",\"authors\":\"Xiaofeng Liu;Chenqi Guo;Mingjun Zhao;Yinglong Ma\",\"doi\":\"10.1109/TNSE.2024.3435839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous explainability techniques have been developed to reveal the prediction principles of Graph Neural Networks (GNNs) across diverse domains. However, many existing approaches, particularly those concentrating on model-level explanations, tend to grapple with the tunnel vision problem, leading to less-than-optimal outcomes and constraining users' comprehensive understanding of GNNs. Furthermore, these methods typically require hyperparameters to mold the explanations, introducing unintended human biases. In response, we present GAXG, a global and self-adaptive optimal graph topology generation framework for explaining GNNs' prediction principles at model-level. GAXG addresses the challenges of tunnel vision and hyperparameter reliance by integrating a strategically tailored Monte Carlo Tree Search (MCTS) algorithm. Notably, our tailored MCTS algorithm is modified to incorporate an Edge Mask Learning and Simulated Annealing-based subgraph screening strategy during the expansion phase, resolving the inherent time-consuming challenges of the tailored MCTS and enhancing the quality of the generated explanatory graph topologies. Experimental results underscore GAXG's effectiveness in discovering global explanations for GNNs, outperforming leading explainers on most evaluation metrics.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6007-6023\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10614894/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10614894/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
GAXG: A Global and Self-Adaptive Optimal Graph Topology Generation Framework for Explaining Graph Neural Networks
Numerous explainability techniques have been developed to reveal the prediction principles of Graph Neural Networks (GNNs) across diverse domains. However, many existing approaches, particularly those concentrating on model-level explanations, tend to grapple with the tunnel vision problem, leading to less-than-optimal outcomes and constraining users' comprehensive understanding of GNNs. Furthermore, these methods typically require hyperparameters to mold the explanations, introducing unintended human biases. In response, we present GAXG, a global and self-adaptive optimal graph topology generation framework for explaining GNNs' prediction principles at model-level. GAXG addresses the challenges of tunnel vision and hyperparameter reliance by integrating a strategically tailored Monte Carlo Tree Search (MCTS) algorithm. Notably, our tailored MCTS algorithm is modified to incorporate an Edge Mask Learning and Simulated Annealing-based subgraph screening strategy during the expansion phase, resolving the inherent time-consuming challenges of the tailored MCTS and enhancing the quality of the generated explanatory graph topologies. Experimental results underscore GAXG's effectiveness in discovering global explanations for GNNs, outperforming leading explainers on most evaluation metrics.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.