氮化铝/氮化镓高电子迁移率晶体管加热和偏压的协同效应:原位透射电子显微镜研究

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronics Reliability Pub Date : 2024-07-26 DOI:10.1016/j.microrel.2024.115470
Nahid Sultan Al-Mamun , Ahmad Islam , Nicholas Glavin , Aman Haque , Douglas E. Wolfe , Fan Ren , Stephen Pearton
{"title":"氮化铝/氮化镓高电子迁移率晶体管加热和偏压的协同效应:原位透射电子显微镜研究","authors":"Nahid Sultan Al-Mamun ,&nbsp;Ahmad Islam ,&nbsp;Nicholas Glavin ,&nbsp;Aman Haque ,&nbsp;Douglas E. Wolfe ,&nbsp;Fan Ren ,&nbsp;Stephen Pearton","doi":"10.1016/j.microrel.2024.115470","DOIUrl":null,"url":null,"abstract":"<div><p>High temperature adversely affects the reliability of AlGaN/GaN high electron mobility transistors (HEMTs). Degradation studies typically involve post-mortem visualization of the device cross-section to identify failure mechanisms. In this study, we present an in-situ technique by operating the transistor inside the transmission electron microscope (TEM) for real time observation of the defects and failure. A custom-made MEMS chip facilitates the simultaneous biasing and heating capability inside the TEM. The results indicate that the high temperature operation promotes nucleation of new defects in addition to the propagation of existing defects, which degrade the performance of the device even at low biasing conditions. The gate Schottky contact is found to be the most vulnerable region at elevated temperature. The diffusion of gate metals, especially the diffusion of Au at the metal-semiconductor interface initiates the gate degradation process, as confirmed by energy dispersive X-ray spectroscopy (EDS), followed by catastrophic failure with the increase of operation temperature and drain biasing voltage. The high-resolution TEM imaging along with geometric phase analysis reveals the evolution of defect clusters, such as dislocations networks, stacking faults, and amorphized regions, in the AlGaN and GaN layers, which increases the lattice strain leading to catastrophic failure at elevated temperature. The insights obtained from the in-situ study may be useful in improving high temperature HEMT reliability.</p></div>","PeriodicalId":51131,"journal":{"name":"Microelectronics Reliability","volume":"160 ","pages":"Article 115470"},"PeriodicalIF":1.6000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic effects of heating and biasing of AlGaN/GaN high electron mobility transistors: An in-situ transmission electron microscopy study\",\"authors\":\"Nahid Sultan Al-Mamun ,&nbsp;Ahmad Islam ,&nbsp;Nicholas Glavin ,&nbsp;Aman Haque ,&nbsp;Douglas E. Wolfe ,&nbsp;Fan Ren ,&nbsp;Stephen Pearton\",\"doi\":\"10.1016/j.microrel.2024.115470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High temperature adversely affects the reliability of AlGaN/GaN high electron mobility transistors (HEMTs). Degradation studies typically involve post-mortem visualization of the device cross-section to identify failure mechanisms. In this study, we present an in-situ technique by operating the transistor inside the transmission electron microscope (TEM) for real time observation of the defects and failure. A custom-made MEMS chip facilitates the simultaneous biasing and heating capability inside the TEM. The results indicate that the high temperature operation promotes nucleation of new defects in addition to the propagation of existing defects, which degrade the performance of the device even at low biasing conditions. The gate Schottky contact is found to be the most vulnerable region at elevated temperature. The diffusion of gate metals, especially the diffusion of Au at the metal-semiconductor interface initiates the gate degradation process, as confirmed by energy dispersive X-ray spectroscopy (EDS), followed by catastrophic failure with the increase of operation temperature and drain biasing voltage. The high-resolution TEM imaging along with geometric phase analysis reveals the evolution of defect clusters, such as dislocations networks, stacking faults, and amorphized regions, in the AlGaN and GaN layers, which increases the lattice strain leading to catastrophic failure at elevated temperature. The insights obtained from the in-situ study may be useful in improving high temperature HEMT reliability.</p></div>\",\"PeriodicalId\":51131,\"journal\":{\"name\":\"Microelectronics Reliability\",\"volume\":\"160 \",\"pages\":\"Article 115470\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronics Reliability\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0026271424001501\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronics Reliability","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026271424001501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

高温会对氮化铝/氮化镓高电子迁移率晶体管(HEMT)的可靠性产生不利影响。降解研究通常涉及器件横截面的死后可视化,以确定失效机制。在本研究中,我们提出了一种原位技术,在透射电子显微镜(TEM)内操作晶体管,实时观察缺陷和失效情况。定制的 MEMS 芯片有助于在 TEM 内同时进行偏压和加热。结果表明,除了现有缺陷的传播外,高温操作还促进了新缺陷的成核,即使在低偏压条件下也会降低器件的性能。在高温条件下,栅极肖特基触点是最脆弱的区域。能量色散 X 射线光谱(EDS)证实,栅极金属的扩散,特别是金属-半导体界面上金的扩散,启动了栅极降解过程,随后随着工作温度和漏极偏置电压的升高而发生灾难性故障。高分辨率 TEM 成像和几何相位分析揭示了 AlGaN 和 GaN 层中缺陷簇(如位错网络、堆叠断层和非晶化区域)的演化,这增加了晶格应变,导致高温下的灾难性失效。从原位研究中获得的启示可能有助于提高高温 HEMT 的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic effects of heating and biasing of AlGaN/GaN high electron mobility transistors: An in-situ transmission electron microscopy study

High temperature adversely affects the reliability of AlGaN/GaN high electron mobility transistors (HEMTs). Degradation studies typically involve post-mortem visualization of the device cross-section to identify failure mechanisms. In this study, we present an in-situ technique by operating the transistor inside the transmission electron microscope (TEM) for real time observation of the defects and failure. A custom-made MEMS chip facilitates the simultaneous biasing and heating capability inside the TEM. The results indicate that the high temperature operation promotes nucleation of new defects in addition to the propagation of existing defects, which degrade the performance of the device even at low biasing conditions. The gate Schottky contact is found to be the most vulnerable region at elevated temperature. The diffusion of gate metals, especially the diffusion of Au at the metal-semiconductor interface initiates the gate degradation process, as confirmed by energy dispersive X-ray spectroscopy (EDS), followed by catastrophic failure with the increase of operation temperature and drain biasing voltage. The high-resolution TEM imaging along with geometric phase analysis reveals the evolution of defect clusters, such as dislocations networks, stacking faults, and amorphized regions, in the AlGaN and GaN layers, which increases the lattice strain leading to catastrophic failure at elevated temperature. The insights obtained from the in-situ study may be useful in improving high temperature HEMT reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microelectronics Reliability
Microelectronics Reliability 工程技术-工程:电子与电气
CiteScore
3.30
自引率
12.50%
发文量
342
审稿时长
68 days
期刊介绍: Microelectronics Reliability, is dedicated to disseminating the latest research results and related information on the reliability of microelectronic devices, circuits and systems, from materials, process and manufacturing, to design, testing and operation. The coverage of the journal includes the following topics: measurement, understanding and analysis; evaluation and prediction; modelling and simulation; methodologies and mitigation. Papers which combine reliability with other important areas of microelectronics engineering, such as design, fabrication, integration, testing, and field operation will also be welcome, and practical papers reporting case studies in the field and specific application domains are particularly encouraged. Most accepted papers will be published as Research Papers, describing significant advances and completed work. Papers reviewing important developing topics of general interest may be accepted for publication as Review Papers. Urgent communications of a more preliminary nature and short reports on completed practical work of current interest may be considered for publication as Research Notes. All contributions are subject to peer review by leading experts in the field.
期刊最新文献
Comparative study of single event upset susceptibility in the Complementary FET (CFET) and FinFET based 6T-SRAM Effects of humidity, ionic contaminations and temperature on the degradation of silicone-based sealing materials used in microelectronics Physics-of-failure based lifetime modelling for SiC based automotive power modules using rate- and temperature-dependent modelling of sintered silver Study on single-event burnout hardening with reduction of hole current density by top polysilicon diode of SOI LDMOS based on TCAD simulations An online junction temperature detection circuit for SiC MOSFETs considering threshold voltage drift compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1