{"title":"利用动态解耦单独处理量子门相互作用","authors":"M.C. Smith, A.D. Leu, M.F. Gely, D.M. Lucas","doi":"10.1103/prxquantum.5.030321","DOIUrl":null,"url":null,"abstract":"A leading approach to implementing small-scale quantum computers has been to use laser beams, focused to micron spot sizes, to address and entangle trapped ions in a linear crystal. Here we propose a method to implement individually addressed entangling gate interactions, but driven by microwave fields, with a spatial resolution of a few microns, corresponding to <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math> microwave wavelengths. We experimentally demonstrate the ability to suppress the effect of the state-dependent force using a single ion, and find the required interaction introduces <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mn>3.7</mn><mo stretchy=\"false\">(</mo><mn>4</mn><mo stretchy=\"false\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> error per emulated gate in a single-qubit benchmarking sequence. We model the scheme for a 17-qubit ion crystal, and find that any pair of ions should be addressable with an average crosstalk error of approximately <math display=\"inline\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math>.","PeriodicalId":501296,"journal":{"name":"PRX Quantum","volume":"171 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Individually Addressed Quantum Gate Interactions Using Dynamical Decoupling\",\"authors\":\"M.C. Smith, A.D. Leu, M.F. Gely, D.M. Lucas\",\"doi\":\"10.1103/prxquantum.5.030321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A leading approach to implementing small-scale quantum computers has been to use laser beams, focused to micron spot sizes, to address and entangle trapped ions in a linear crystal. Here we propose a method to implement individually addressed entangling gate interactions, but driven by microwave fields, with a spatial resolution of a few microns, corresponding to <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math> microwave wavelengths. We experimentally demonstrate the ability to suppress the effect of the state-dependent force using a single ion, and find the required interaction introduces <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mn>3.7</mn><mo stretchy=\\\"false\\\">(</mo><mn>4</mn><mo stretchy=\\\"false\\\">)</mo><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>4</mn></mrow></msup></math> error per emulated gate in a single-qubit benchmarking sequence. We model the scheme for a 17-qubit ion crystal, and find that any pair of ions should be addressable with an average crosstalk error of approximately <math display=\\\"inline\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msup><mn>10</mn><mrow><mo>−</mo><mn>5</mn></mrow></msup></math>.\",\"PeriodicalId\":501296,\"journal\":{\"name\":\"PRX Quantum\",\"volume\":\"171 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PRX Quantum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/prxquantum.5.030321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Quantum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxquantum.5.030321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Individually Addressed Quantum Gate Interactions Using Dynamical Decoupling
A leading approach to implementing small-scale quantum computers has been to use laser beams, focused to micron spot sizes, to address and entangle trapped ions in a linear crystal. Here we propose a method to implement individually addressed entangling gate interactions, but driven by microwave fields, with a spatial resolution of a few microns, corresponding to microwave wavelengths. We experimentally demonstrate the ability to suppress the effect of the state-dependent force using a single ion, and find the required interaction introduces error per emulated gate in a single-qubit benchmarking sequence. We model the scheme for a 17-qubit ion crystal, and find that any pair of ions should be addressable with an average crosstalk error of approximately .