Thomas G. Ciardi, Arafath Nihar, Rounak Chawla, Olatunde Akanbi, Pawan K. Tripathi, Yinghui Wu, Vipin Chaudhary, Roger H. French
{"title":"使用 CRADLE 的材料数据科学:以数据为中心的分布式方法","authors":"Thomas G. Ciardi, Arafath Nihar, Rounak Chawla, Olatunde Akanbi, Pawan K. Tripathi, Yinghui Wu, Vipin Chaudhary, Roger H. French","doi":"10.1557/s43579-024-00616-6","DOIUrl":null,"url":null,"abstract":"<p>There is a paradigm shift towards data-centric AI, where model efficacy relies on quality, unified data. The common research analytics and data lifecycle environment (CRADLE™) is an infrastructure and framework that supports a data-centric paradigm and materials data science at scale through heterogeneous data management, elastic scaling, and accessible interfaces. We demonstrate CRADLE’s capabilities through five materials science studies: phase identification in X-ray diffraction, defect segmentation in X-ray computed tomography, polymer crystallization analysis in atomic force microscopy, feature extraction from additive manufacturing, and geospatial data fusion. CRADLE catalyzes scalable, reproducible insights to transform how data is captured, stored, and analyzed.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"150 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Materials data science using CRADLE: A distributed, data-centric approach\",\"authors\":\"Thomas G. Ciardi, Arafath Nihar, Rounak Chawla, Olatunde Akanbi, Pawan K. Tripathi, Yinghui Wu, Vipin Chaudhary, Roger H. French\",\"doi\":\"10.1557/s43579-024-00616-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is a paradigm shift towards data-centric AI, where model efficacy relies on quality, unified data. The common research analytics and data lifecycle environment (CRADLE™) is an infrastructure and framework that supports a data-centric paradigm and materials data science at scale through heterogeneous data management, elastic scaling, and accessible interfaces. We demonstrate CRADLE’s capabilities through five materials science studies: phase identification in X-ray diffraction, defect segmentation in X-ray computed tomography, polymer crystallization analysis in atomic force microscopy, feature extraction from additive manufacturing, and geospatial data fusion. CRADLE catalyzes scalable, reproducible insights to transform how data is captured, stored, and analyzed.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3>\\n\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00616-6\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00616-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Materials data science using CRADLE: A distributed, data-centric approach
There is a paradigm shift towards data-centric AI, where model efficacy relies on quality, unified data. The common research analytics and data lifecycle environment (CRADLE™) is an infrastructure and framework that supports a data-centric paradigm and materials data science at scale through heterogeneous data management, elastic scaling, and accessible interfaces. We demonstrate CRADLE’s capabilities through five materials science studies: phase identification in X-ray diffraction, defect segmentation in X-ray computed tomography, polymer crystallization analysis in atomic force microscopy, feature extraction from additive manufacturing, and geospatial data fusion. CRADLE catalyzes scalable, reproducible insights to transform how data is captured, stored, and analyzed.
期刊介绍:
MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.