锂离子电池中多孔电极随速率变化的体积变化建模

IF 3.1 4区 工程技术 Q2 ELECTROCHEMISTRY Journal of The Electrochemical Society Pub Date : 2024-07-31 DOI:10.1149/1945-7111/ad6483
Taylor R. Garrick, Miguel A. Fernandez, Brian J. Koch, Erin Efimoff, Matthew Jones, Rafid Mollah, Hunter Teel, Xiaoniu Du, Sirivatch Shimpalee, Song-Yul Choe, Venkat R. Subramanian, Jason B. Siegel
{"title":"锂离子电池中多孔电极随速率变化的体积变化建模","authors":"Taylor R. Garrick, Miguel A. Fernandez, Brian J. Koch, Erin Efimoff, Matthew Jones, Rafid Mollah, Hunter Teel, Xiaoniu Du, Sirivatch Shimpalee, Song-Yul Choe, Venkat R. Subramanian, Jason B. Siegel","doi":"10.1149/1945-7111/ad6483","DOIUrl":null,"url":null,"abstract":"Automotive manufacturers are working to improve individual cell, module, and overall pack design by increasing the performance, range, and durability, while reducing cost. One key piece to consider during the design process is the active material volume change, its linkage to the particle, electrode, and cell level volume changes, and the interplay with structural components in the rechargeable energy storage system. As the time from initial design to manufacture of electric vehicles decreases, design work needs to move to the virtual domain; therefore, a need for coupled electrochemical-mechanical models that take into account the active material volume change and the rate dependence of this volume change need to be considered. In this study, we illustrated the applicability of a coupled electrochemical-mechanical battery model considering multiple representative particles to capture experimentally measured rate dependent reversible volume change at the cell level through the use of an electrochemical-mechanical battery model that couples the particle, electrode, and cell level volume changes. By employing this coupled approach, the importance of considering multiple active material particle sizes representative of the distribution is demonstrated. The non-uniformity in utilization between two different size particles as well as the significant spatial non-uniformity in the radial direction of the larger particles is the primary driver of the rate dependent characteristics of the volume change at the electrode and cell level.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":"292 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Rate Dependent Volume Change in Porous Electrodes in Lithium-Ion Batteries\",\"authors\":\"Taylor R. Garrick, Miguel A. Fernandez, Brian J. Koch, Erin Efimoff, Matthew Jones, Rafid Mollah, Hunter Teel, Xiaoniu Du, Sirivatch Shimpalee, Song-Yul Choe, Venkat R. Subramanian, Jason B. Siegel\",\"doi\":\"10.1149/1945-7111/ad6483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive manufacturers are working to improve individual cell, module, and overall pack design by increasing the performance, range, and durability, while reducing cost. One key piece to consider during the design process is the active material volume change, its linkage to the particle, electrode, and cell level volume changes, and the interplay with structural components in the rechargeable energy storage system. As the time from initial design to manufacture of electric vehicles decreases, design work needs to move to the virtual domain; therefore, a need for coupled electrochemical-mechanical models that take into account the active material volume change and the rate dependence of this volume change need to be considered. In this study, we illustrated the applicability of a coupled electrochemical-mechanical battery model considering multiple representative particles to capture experimentally measured rate dependent reversible volume change at the cell level through the use of an electrochemical-mechanical battery model that couples the particle, electrode, and cell level volume changes. By employing this coupled approach, the importance of considering multiple active material particle sizes representative of the distribution is demonstrated. The non-uniformity in utilization between two different size particles as well as the significant spatial non-uniformity in the radial direction of the larger particles is the primary driver of the rate dependent characteristics of the volume change at the electrode and cell level.\",\"PeriodicalId\":17364,\"journal\":{\"name\":\"Journal of The Electrochemical Society\",\"volume\":\"292 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Electrochemical Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1149/1945-7111/ad6483\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad6483","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

汽车制造商正在努力改进单个电池、模块和整体电池组的设计,以提高性能、续航能力和耐用性,同时降低成本。设计过程中需要考虑的一个关键因素是活性材料体积的变化,它与颗粒、电极和电池级体积变化的联系,以及与充电储能系统中结构组件的相互作用。随着电动汽车从初始设计到制造的时间缩短,设计工作需要转移到虚拟领域;因此,需要考虑到活性材料体积变化和这种体积变化的速率依赖性的电化学-机械耦合模型。在本研究中,我们说明了电化学-机械耦合电池模型的适用性,该模型考虑了多个代表性粒子,通过使用电化学-机械电池模型,将粒子、电极和电池水平的体积变化耦合起来,从而捕捉到实验测量到的电池水平上与速率相关的可逆体积变化。通过采用这种耦合方法,证明了考虑代表分布的多种活性材料颗粒尺寸的重要性。两种不同尺寸颗粒之间利用率的不均匀性,以及较大颗粒径向方向上显著的空间不均匀性,是电极和电池层面体积变化速率相关特性的主要驱动因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Rate Dependent Volume Change in Porous Electrodes in Lithium-Ion Batteries
Automotive manufacturers are working to improve individual cell, module, and overall pack design by increasing the performance, range, and durability, while reducing cost. One key piece to consider during the design process is the active material volume change, its linkage to the particle, electrode, and cell level volume changes, and the interplay with structural components in the rechargeable energy storage system. As the time from initial design to manufacture of electric vehicles decreases, design work needs to move to the virtual domain; therefore, a need for coupled electrochemical-mechanical models that take into account the active material volume change and the rate dependence of this volume change need to be considered. In this study, we illustrated the applicability of a coupled electrochemical-mechanical battery model considering multiple representative particles to capture experimentally measured rate dependent reversible volume change at the cell level through the use of an electrochemical-mechanical battery model that couples the particle, electrode, and cell level volume changes. By employing this coupled approach, the importance of considering multiple active material particle sizes representative of the distribution is demonstrated. The non-uniformity in utilization between two different size particles as well as the significant spatial non-uniformity in the radial direction of the larger particles is the primary driver of the rate dependent characteristics of the volume change at the electrode and cell level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
12.80%
发文量
1369
审稿时长
1.5 months
期刊介绍: The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.
期刊最新文献
Electrochemical HOCl Production Modeling for an Electrochemical Catheter. Comprehensive Analysis of Commercial Sodium-Ion Batteries: Structural and Electrochemical Insights Electrochemical Behaviour of Nickel(II)-Rhenium(VII) And Electrodeposition of Nickel-Rhenium Alloy from Choline Chloride - Urea Deep Eutectic Solvent Optimization of Post-Annealing Temperature of RF Magnetron-Sputtered ZnO Thin Films for Enhancing Performances of UV Photodetectors Spatially Resolved Assessment and Analysis of Al-Zn, Mg, and Mg/Al-Zn Metal-Rich Primers Applied to AA 7075-T651 in Full Immersion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1