{"title":"冲击波/湍流边界层相互作用中热力学波动之间的相关性","authors":"Ximeng Hou, Dehao Xu, Jianchun Wang, Shiyi Chen","doi":"10.1103/physrevfluids.9.073401","DOIUrl":null,"url":null,"abstract":"The second moment correlations between thermodynamic fluctuations in incident shock wave/turbulent boundary layer interaction flows at Mach 2.25 are systematically investigated by direct numerical simulation. The concerned fluctuations are those of pressure, entropy, temperature, and density <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mo>{</mo><msup><mi>p</mi><mo>′</mo></msup><mo>,</mo><msup><mi>s</mi><mo>′</mo></msup><mo>,</mo><msup><mi>T</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ρ</mi><mo>′</mo></msup><mo>}</mo></mrow></math>. Effects of wall temperature and Reynolds number are studied. Kovásznay decomposition is introduced to decompose the fluctuations into acoustic and entropic modes. It is shown that all the six concerned correlations are determined by merely two parameters, which are interpreted as intermodal competition and intermodal correlation, respectively. Accordingly, the flow field is divided into several zones, each with distinct physical properties, to analyze the contributing factors to the correlations. In addition, a model is proposed where the correlations are deemed as functions of the root-mean-square values of thermodynamic fluctuations, as in Gerolymos and Vallet [<span>J. Fluid Mech.</span> <b>851</b>, 447 (2018)] but simpler. The formula for each correlation has the same form. The accuracy of the model is validated in boundary layers where the intermodal correlation is weak.","PeriodicalId":20160,"journal":{"name":"Physical Review Fluids","volume":"44 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlations between thermodynamic fluctuations in shock wave/turbulent boundary layer interaction\",\"authors\":\"Ximeng Hou, Dehao Xu, Jianchun Wang, Shiyi Chen\",\"doi\":\"10.1103/physrevfluids.9.073401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The second moment correlations between thermodynamic fluctuations in incident shock wave/turbulent boundary layer interaction flows at Mach 2.25 are systematically investigated by direct numerical simulation. The concerned fluctuations are those of pressure, entropy, temperature, and density <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow><mo>{</mo><msup><mi>p</mi><mo>′</mo></msup><mo>,</mo><msup><mi>s</mi><mo>′</mo></msup><mo>,</mo><msup><mi>T</mi><mo>′</mo></msup><mo>,</mo><msup><mi>ρ</mi><mo>′</mo></msup><mo>}</mo></mrow></math>. Effects of wall temperature and Reynolds number are studied. Kovásznay decomposition is introduced to decompose the fluctuations into acoustic and entropic modes. It is shown that all the six concerned correlations are determined by merely two parameters, which are interpreted as intermodal competition and intermodal correlation, respectively. Accordingly, the flow field is divided into several zones, each with distinct physical properties, to analyze the contributing factors to the correlations. In addition, a model is proposed where the correlations are deemed as functions of the root-mean-square values of thermodynamic fluctuations, as in Gerolymos and Vallet [<span>J. Fluid Mech.</span> <b>851</b>, 447 (2018)] but simpler. The formula for each correlation has the same form. The accuracy of the model is validated in boundary layers where the intermodal correlation is weak.\",\"PeriodicalId\":20160,\"journal\":{\"name\":\"Physical Review Fluids\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Fluids\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevfluids.9.073401\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Fluids","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevfluids.9.073401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Correlations between thermodynamic fluctuations in shock wave/turbulent boundary layer interaction
The second moment correlations between thermodynamic fluctuations in incident shock wave/turbulent boundary layer interaction flows at Mach 2.25 are systematically investigated by direct numerical simulation. The concerned fluctuations are those of pressure, entropy, temperature, and density . Effects of wall temperature and Reynolds number are studied. Kovásznay decomposition is introduced to decompose the fluctuations into acoustic and entropic modes. It is shown that all the six concerned correlations are determined by merely two parameters, which are interpreted as intermodal competition and intermodal correlation, respectively. Accordingly, the flow field is divided into several zones, each with distinct physical properties, to analyze the contributing factors to the correlations. In addition, a model is proposed where the correlations are deemed as functions of the root-mean-square values of thermodynamic fluctuations, as in Gerolymos and Vallet [J. Fluid Mech.851, 447 (2018)] but simpler. The formula for each correlation has the same form. The accuracy of the model is validated in boundary layers where the intermodal correlation is weak.
期刊介绍:
Physical Review Fluids is APS’s newest online-only journal dedicated to publishing innovative research that will significantly advance the fundamental understanding of fluid dynamics. Physical Review Fluids expands the scope of the APS journals to include additional areas of fluid dynamics research, complements the existing Physical Review collection, and maintains the same quality and reputation that authors and subscribers expect from APS. The journal is published with the endorsement of the APS Division of Fluid Dynamics.