玻璃容器成型工艺的有限元软件

IF 2.1 3区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS International Journal of Applied Glass Science Pub Date : 2024-07-30 DOI:10.1111/ijag.16683
Bruno Martins
{"title":"玻璃容器成型工艺的有限元软件","authors":"Bruno Martins","doi":"10.1111/ijag.16683","DOIUrl":null,"url":null,"abstract":"<p>A two-dimensional (2D) axisymmetric numerical model, based on the finite element method, for glass containers forming processes is presented. Glass forming processes involve coupled thermomechanical phenomena in which heat transfer and viscous flow are dependent, as glass viscosity is highly dependent on temperature. During the overall process glass changes from a molten state to a solid state. Therefore, adequate cooling conditions must be set appropriately. From the numerical point of view, the modeling must be robust so as to adjust to the different sequenced stages. Remeshing techniques requiring adequate data transfer, as well as, different thermal and mechanical contact conditions between glass and molds must be taken into account. Also, effective treatment of the incompressible conditions associated with glass flow must be dealt with. The aim is to set the better process parameters so that the final containers have the required geometrical shape and thickness distribution. A numerical model was conducted addressing all these issues and a thickness distribution comparison with real industrial products was performed.</p>","PeriodicalId":13850,"journal":{"name":"International Journal of Applied Glass Science","volume":"16 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element software for forming processes of glass containers\",\"authors\":\"Bruno Martins\",\"doi\":\"10.1111/ijag.16683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A two-dimensional (2D) axisymmetric numerical model, based on the finite element method, for glass containers forming processes is presented. Glass forming processes involve coupled thermomechanical phenomena in which heat transfer and viscous flow are dependent, as glass viscosity is highly dependent on temperature. During the overall process glass changes from a molten state to a solid state. Therefore, adequate cooling conditions must be set appropriately. From the numerical point of view, the modeling must be robust so as to adjust to the different sequenced stages. Remeshing techniques requiring adequate data transfer, as well as, different thermal and mechanical contact conditions between glass and molds must be taken into account. Also, effective treatment of the incompressible conditions associated with glass flow must be dealt with. The aim is to set the better process parameters so that the final containers have the required geometrical shape and thickness distribution. A numerical model was conducted addressing all these issues and a thickness distribution comparison with real industrial products was performed.</p>\",\"PeriodicalId\":13850,\"journal\":{\"name\":\"International Journal of Applied Glass Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Glass Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16683\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Glass Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijag.16683","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了基于有限元法的玻璃容器成型过程二维轴对称数值模型。玻璃成型过程涉及热力学耦合现象,其中热传导和粘性流动相互依赖,因为玻璃粘度高度依赖于温度。在整个过程中,玻璃从熔融状态变为固态。因此,必须适当设置足够的冷却条件。从数值角度来看,建模必须稳健,以便适应不同的顺序阶段。必须考虑到需要充分数据传输的重塑技术,以及玻璃和模具之间不同的热接触和机械接触条件。此外,还必须有效处理与玻璃流动相关的不可压缩条件。目的是设置更好的工艺参数,使最终容器具有所需的几何形状和厚度分布。针对所有这些问题建立了一个数值模型,并与实际工业产品进行了厚度分布比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite element software for forming processes of glass containers

A two-dimensional (2D) axisymmetric numerical model, based on the finite element method, for glass containers forming processes is presented. Glass forming processes involve coupled thermomechanical phenomena in which heat transfer and viscous flow are dependent, as glass viscosity is highly dependent on temperature. During the overall process glass changes from a molten state to a solid state. Therefore, adequate cooling conditions must be set appropriately. From the numerical point of view, the modeling must be robust so as to adjust to the different sequenced stages. Remeshing techniques requiring adequate data transfer, as well as, different thermal and mechanical contact conditions between glass and molds must be taken into account. Also, effective treatment of the incompressible conditions associated with glass flow must be dealt with. The aim is to set the better process parameters so that the final containers have the required geometrical shape and thickness distribution. A numerical model was conducted addressing all these issues and a thickness distribution comparison with real industrial products was performed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Applied Glass Science
International Journal of Applied Glass Science MATERIALS SCIENCE, CERAMICS-
CiteScore
4.50
自引率
9.50%
发文量
73
审稿时长
>12 weeks
期刊介绍: The International Journal of Applied Glass Science (IJAGS) endeavors to be an indispensable source of information dealing with the application of glass science and engineering across the entire materials spectrum. Through the solicitation, editing, and publishing of cutting-edge peer-reviewed papers, IJAGS will be a highly respected and enduring chronicle of major advances in applied glass science throughout this century. It will be of critical value to the work of scientists, engineers, educators, students, and organizations involved in the research, manufacture and utilization of the material glass. Guided by an International Advisory Board, IJAGS will focus on topical issue themes that broadly encompass the advanced description, application, modeling, manufacture, and experimental investigation of glass.
期刊最新文献
Issue Information Microstructure and ion-exchange properties of transparent glass–ceramics containing Mg2SiO4 crystals A survey of commercial soda–lime–silica glass compositions: Trends and opportunities I—Compositions, properties and theoretical energy requirements Anti-glare performance of sol-gel-derived spray coatings prepared with various water-to-alkoxide ratios Enthalpy relaxation of sodium aluminosilicate glasses from thermal analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1