Cailan Jeynes-Smith, Michael Bode, Robyn P. Araujo
{"title":"识别和解释生态网络中的复原力。","authors":"Cailan Jeynes-Smith, Michael Bode, Robyn P. Araujo","doi":"10.1111/ele.14484","DOIUrl":null,"url":null,"abstract":"<p>Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit ‘structural resilience’, a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.</p>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"27 8","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14484","citationCount":"0","resultStr":"{\"title\":\"Identifying and explaining resilience in ecological networks\",\"authors\":\"Cailan Jeynes-Smith, Michael Bode, Robyn P. Araujo\",\"doi\":\"10.1111/ele.14484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit ‘structural resilience’, a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.</p>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ele.14484\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.14484\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.14484","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Identifying and explaining resilience in ecological networks
Resilient ecological systems are more likely to persist and function in the Anthropocene. Current methods for estimating an ecosystem's resilience rely on accurately parameterized ecosystem models, which is a significant empirical challenge. In this paper, we adapt tools from biochemical kinetics to identify ecological networks that exhibit ‘structural resilience’, a strong form of resilience that is solely a property of the network structure and is independent of model parameters. We undertake an exhaustive search for structural resilience across all three-species ecological networks, under a generalized Lotka-Volterra modelling framework. Out of 20,000 possible network structures, approximately 2% display structural resilience. The properties of these networks provide important insights into the mechanisms that could promote resilience in ecosystems, provide new theoretical avenues for qualitative modelling approaches and provide a foundation for identifying robust forms of ecological resilience in large, realistic ecological networks.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.