Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek
{"title":"在 Moodle 插件中实施化学软评分系统:反应处理。","authors":"Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek","doi":"10.1186/s13321-024-00889-y","DOIUrl":null,"url":null,"abstract":"<div><p>Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.</p><p><b>Scientific contribution</b></p><p> This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295431/pdf/","citationCount":"0","resultStr":"{\"title\":\"Implementation of a soft grading system for chemistry in a Moodle plugin: reaction handling\",\"authors\":\"Louis Plyer, Gilles Marcou, Céline Perves, Fanny Bonachera, Alexander Varnek\",\"doi\":\"10.1186/s13321-024-00889-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.</p><p><b>Scientific contribution</b></p><p> This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.</p></div>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295431/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00889-y\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00889-y","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Implementation of a soft grading system for chemistry in a Moodle plugin: reaction handling
Here, we present a new method for evaluating questions on chemical reactions in the context of remote education. This method can be used when binary grading is not sufficient as some tolerance may be acceptable. In order to determine a grade, the developed workflow uses the pairwise similarity assessment of two considered reactions, each encoded by a single molecular graph with the help of the Condensed Graph of Reaction (CGR) approach. This workflow is part of the ChemMoodle project and is implemented as a Moodle Plugin. It uses the Chemdoodle engine for reaction drawing and visualization and communicates with a REST server calculating the similarity score using ISIDA fragment descriptors. The plugin is open-source, accessible in GitHub (https://github.com/Laboratoire-de-Chemoinformatique/moodle-qtype_reacsimilarity) and on the Moodle plugin store (https://moodle.org/plugins/qtype_reacsimilarity?lang=en). Both similarity measures and fragmentation can be configured.
Scientific contribution
This work introduces an open-source method for evaluating chemical reaction questions within Moodle using the CGR approach. Our contribution provides a nuanced grading mechanism that accommodates acceptable tolerances in reaction assessments, enhancing the accuracy and flexibility of the grading process.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.