Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim
{"title":"超越临界掺杂的铜氧化物中镜像对称性的自发破缺","authors":"Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim","doi":"10.1038/s41567-024-02601-1","DOIUrl":null,"url":null,"abstract":"Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1616-1621"},"PeriodicalIF":17.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping\",\"authors\":\"Saegyeol Jung, Byeongjun Seok, Chang jae Roh, Younsik Kim, Donghan Kim, Yeonjae Lee, San Kang, Shigeyuki Ishida, Shik Shin, Hiroshi Eisaki, Tae Won Noh, Dongjoon Song, Changyoung Kim\",\"doi\":\"10.1038/s41567-024-02601-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 10\",\"pages\":\"1616-1621\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02601-1\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02601-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Spontaneous breaking of mirror symmetry in a cuprate beyond critical doping
Identifying ordered phases and their underlying symmetries in materials that exhibit high-temperature superconductivity is an important step towards understanding the mechanism of that phenomenon. Indeed, the critical behaviour related to phase transitions of those ordered phases is expected to be correlated with the superconductivity. In cuprate materials, efforts to find such ordered phases have mainly focused on symmetry breaking in the pseudogap region whereas the Fermi-liquid-like metallic region beyond the so-called critical doping at which the pseudogap disappears has been regarded as a trivial disordered state. Here, we uncover a broken mirror symmetry in the Fermi-liquid-like phase in (Bi,Pb)2Sr2CaCu2O8+δ beyond the critical doping. We do this by tracking the temperature dependence of the rotational-anisotropy of second-harmonic generation for two different dopings. We observe behaviour reminiscent of an order parameter with an onset temperature that coincides with the strange metal to Fermi-liquid-like metal crossover. Angle-resolved photoemission spectroscopy shows that the quasiparticle coherence between CuO2 bilayers is enhanced in proportion to the symmetry-breaking response as a function of temperature, suggesting that the change in metallicity and symmetry breaking are linked. These observations contradict the conventional quantum disordered scenario for over-critical-doped cuprates. The Fermi liquid state in highly doped superconducting cuprates is normally thought of as disordered. Now, an observation of broken mirror symmetry in that phase suggests otherwise.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.