Yu-Te Hsu, Andreas Rydh, Maarten Berben, Caitlin Duffy, Alberto de la Torre, Robin S. Perry, Nigel E. Hussey
{"title":"掺杂 5d 莫特绝缘体中的载流子密度交叉和准粒子质量增强","authors":"Yu-Te Hsu, Andreas Rydh, Maarten Berben, Caitlin Duffy, Alberto de la Torre, Robin S. Perry, Nigel E. Hussey","doi":"10.1038/s41567-024-02564-3","DOIUrl":null,"url":null,"abstract":"High-temperature superconductivity in cuprates emerges upon doping the parent Mott insulator. Key features of the low-doped cuprate superconductors include an effective carrier density that tracks the number of doped holes, the emergence of an anisotropic pseudogap that is characterized by disconnected Fermi arcs and the closure of the gap at a critical doping level. In Sr2IrO4, a spin–orbit-coupled Mott insulator often regarded as a 5d analogue of the cuprates, surface probes have also revealed the emergence of an anisotropic pseudogap and Fermi arcs under electron doping. However, neither the corresponding critical doping nor the bulk signatures of pseudogap closure have yet been observed. Here we demonstrate that electron-doped Sr2IrO4 exhibits a critical doping level with a marked crossover in the effective carrier density at low temperatures. This is accompanied by a five-orders-of-magnitude increase in conductivity and a sixfold enhancement in the electronic specific heat. These collective findings resemble the bulk pseudogap phenomenology in cuprates. However, given that electron-doped Sr2IrO4 is non-superconducting, it suggests that the pseudogap may not be a state of precursor pairing. Therefore, our results narrow the search for the key ingredient underpinning the formation of the superconducting condensate in doped Mott insulators. The pseudogap in cuprates is often linked to superconductivity. Now bulk evidence for a pseudogap is found in doped non-superconducting Sr2IrO4, revealing that pseudogaps in doped Mott insulators are not necessarily a precursor to superconductivity.","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"20 10","pages":"1596-1602"},"PeriodicalIF":17.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carrier density crossover and quasiparticle mass enhancement in a doped 5d Mott insulator\",\"authors\":\"Yu-Te Hsu, Andreas Rydh, Maarten Berben, Caitlin Duffy, Alberto de la Torre, Robin S. Perry, Nigel E. Hussey\",\"doi\":\"10.1038/s41567-024-02564-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-temperature superconductivity in cuprates emerges upon doping the parent Mott insulator. Key features of the low-doped cuprate superconductors include an effective carrier density that tracks the number of doped holes, the emergence of an anisotropic pseudogap that is characterized by disconnected Fermi arcs and the closure of the gap at a critical doping level. In Sr2IrO4, a spin–orbit-coupled Mott insulator often regarded as a 5d analogue of the cuprates, surface probes have also revealed the emergence of an anisotropic pseudogap and Fermi arcs under electron doping. However, neither the corresponding critical doping nor the bulk signatures of pseudogap closure have yet been observed. Here we demonstrate that electron-doped Sr2IrO4 exhibits a critical doping level with a marked crossover in the effective carrier density at low temperatures. This is accompanied by a five-orders-of-magnitude increase in conductivity and a sixfold enhancement in the electronic specific heat. These collective findings resemble the bulk pseudogap phenomenology in cuprates. However, given that electron-doped Sr2IrO4 is non-superconducting, it suggests that the pseudogap may not be a state of precursor pairing. Therefore, our results narrow the search for the key ingredient underpinning the formation of the superconducting condensate in doped Mott insulators. The pseudogap in cuprates is often linked to superconductivity. Now bulk evidence for a pseudogap is found in doped non-superconducting Sr2IrO4, revealing that pseudogaps in doped Mott insulators are not necessarily a precursor to superconductivity.\",\"PeriodicalId\":19100,\"journal\":{\"name\":\"Nature Physics\",\"volume\":\"20 10\",\"pages\":\"1596-1602\"},\"PeriodicalIF\":17.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s41567-024-02564-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41567-024-02564-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Carrier density crossover and quasiparticle mass enhancement in a doped 5d Mott insulator
High-temperature superconductivity in cuprates emerges upon doping the parent Mott insulator. Key features of the low-doped cuprate superconductors include an effective carrier density that tracks the number of doped holes, the emergence of an anisotropic pseudogap that is characterized by disconnected Fermi arcs and the closure of the gap at a critical doping level. In Sr2IrO4, a spin–orbit-coupled Mott insulator often regarded as a 5d analogue of the cuprates, surface probes have also revealed the emergence of an anisotropic pseudogap and Fermi arcs under electron doping. However, neither the corresponding critical doping nor the bulk signatures of pseudogap closure have yet been observed. Here we demonstrate that electron-doped Sr2IrO4 exhibits a critical doping level with a marked crossover in the effective carrier density at low temperatures. This is accompanied by a five-orders-of-magnitude increase in conductivity and a sixfold enhancement in the electronic specific heat. These collective findings resemble the bulk pseudogap phenomenology in cuprates. However, given that electron-doped Sr2IrO4 is non-superconducting, it suggests that the pseudogap may not be a state of precursor pairing. Therefore, our results narrow the search for the key ingredient underpinning the formation of the superconducting condensate in doped Mott insulators. The pseudogap in cuprates is often linked to superconductivity. Now bulk evidence for a pseudogap is found in doped non-superconducting Sr2IrO4, revealing that pseudogaps in doped Mott insulators are not necessarily a precursor to superconductivity.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.