PETA:评估蛋白质转移学习与子词标记化对下游应用的影响

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-08-02 DOI:10.1186/s13321-024-00884-3
Yang Tan, Mingchen Li, Ziyi Zhou, Pan Tan, Huiqun Yu, Guisheng Fan, Liang Hong
{"title":"PETA:评估蛋白质转移学习与子词标记化对下游应用的影响","authors":"Yang Tan,&nbsp;Mingchen Li,&nbsp;Ziyi Zhou,&nbsp;Pan Tan,&nbsp;Huiqun Yu,&nbsp;Guisheng Fan,&nbsp;Liang Hong","doi":"10.1186/s13321-024-00884-3","DOIUrl":null,"url":null,"abstract":"<p>Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining. </p>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00884-3","citationCount":"0","resultStr":"{\"title\":\"PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications\",\"authors\":\"Yang Tan,&nbsp;Mingchen Li,&nbsp;Ziyi Zhou,&nbsp;Pan Tan,&nbsp;Huiqun Yu,&nbsp;Guisheng Fan,&nbsp;Liang Hong\",\"doi\":\"10.1186/s13321-024-00884-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining. </p>\",\"PeriodicalId\":617,\"journal\":{\"name\":\"Journal of Cheminformatics\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00884-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cheminformatics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13321-024-00884-3\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00884-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质语言模型(PLM)在蛋白质表征学习中发挥着主导作用。现有的大多数蛋白质语言模型将蛋白质视为由 20 个天然氨基酸组成的序列。这种表示方法的问题在于,它只是简单地将蛋白质序列划分为单个氨基酸的序列,而忽略了某些残基经常一起出现的事实。因此,将氨基酸视为孤立的标记是不恰当的。相反,PLM 应将经常出现的氨基酸组合识别为单个标记。在本研究中,我们使用字节对编码算法和 unigram 来构建用于蛋白质序列标记化的高级残基词汇表,结果表明,与使用简单词汇表训练的 PLM 相比,使用这些高级词汇表预先训练的 PLM 在下游任务中表现出更优越的性能。此外,我们还介绍了 PETA,这是一种用于系统评估 PLM 的综合基准。我们发现,由 50 个和 200 个元素组成的词汇表可实现最佳性能。我们的代码、模型权重和数据集可在 https://github.com/ginnm/ProteinPretraining 上获取。本研究利用字节对编码算法和 unigram 引入了先进的蛋白质序列标记化分析。通过将频繁出现的氨基酸组合识别为单个标记,我们提出的方法提高了 PLM 在下游任务中的性能。此外,我们还提出了用于系统评估 PLM 的新综合基准 PETA,证明 50 个和 200 个元素的词表可提供最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PETA: evaluating the impact of protein transfer learning with sub-word tokenization on downstream applications

Protein language models (PLMs) play a dominant role in protein representation learning. Most existing PLMs regard proteins as sequences of 20 natural amino acids. The problem with this representation method is that it simply divides the protein sequence into sequences of individual amino acids, ignoring the fact that certain residues often occur together. Therefore, it is inappropriate to view amino acids as isolated tokens. Instead, the PLMs should recognize the frequently occurring combinations of amino acids as a single token. In this study, we use the byte-pair-encoding algorithm and unigram to construct advanced residue vocabularies for protein sequence tokenization, and we have shown that PLMs pre-trained using these advanced vocabularies exhibit superior performance on downstream tasks when compared to those trained with simple vocabularies. Furthermore, we introduce PETA, a comprehensive benchmark for systematically evaluating PLMs. We find that vocabularies comprising 50 and 200 elements achieve optimal performance. Our code, model weights, and datasets are available at https://github.com/ginnm/ProteinPretraining.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1