{"title":"早年的利培酮会改变成年后对阿扑吗啡和喹吡罗的运动反应。","authors":"","doi":"10.1016/j.bbr.2024.115171","DOIUrl":null,"url":null,"abstract":"<div><p>An escalating trend of antipsychotic drug use in children with ADHD, disruptive behavior disorder, or mood disorders has raised concerns about the impact of these drugs on brain development. Since antipsychotics chiefly target dopamine receptors, it is important to assay the function of these receptors after early-life antipsychotic administration. Using rats as a model, we examined the effects of early-life risperidone, the most prescribed antipsychotic drug in children, on locomotor responses to the dopamine D<sub>1</sub>/D<sub>2</sub> receptor agonist, apomorphine, and the D<sub>2</sub>/D<sub>3</sub> receptor agonist, quinpirole. Female and male Long-Evans rats received daily subcutaneous injections of risperidone (1.0 and 3.0 mg/kg) or vehicle from postnatal day 14–42. Locomotor responses to one of three doses (0.03, 0.1, and 0.3 mg/kg) of apomorphine or quinpirole were tested once a week for four weeks beginning on postnatal day 76 and 147 for each respective drug. The locomotor activity elicited by the two lower doses of apomorphine was significantly greater in adult rats, especially females, administered risperidone early in life. Adult rats administered risperidone early in life also showed more locomotor activity after the low dose of quinpirole. Overall, female rats were more sensitive to the locomotor effects of each agonist. In a separate group of rats administered risperidone early in life, autoradiography of forebrain D<sub>2</sub> receptors at postnatal day 62 revealed a modest increase in D<sub>2</sub> receptor density in the medial caudate. These results provide evidence that early-life risperidone administration can produce long-lasting changes in dopamine receptor function and density.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early-life risperidone alters locomotor responses to apomorphine and quinpirole in adulthood\",\"authors\":\"\",\"doi\":\"10.1016/j.bbr.2024.115171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An escalating trend of antipsychotic drug use in children with ADHD, disruptive behavior disorder, or mood disorders has raised concerns about the impact of these drugs on brain development. Since antipsychotics chiefly target dopamine receptors, it is important to assay the function of these receptors after early-life antipsychotic administration. Using rats as a model, we examined the effects of early-life risperidone, the most prescribed antipsychotic drug in children, on locomotor responses to the dopamine D<sub>1</sub>/D<sub>2</sub> receptor agonist, apomorphine, and the D<sub>2</sub>/D<sub>3</sub> receptor agonist, quinpirole. Female and male Long-Evans rats received daily subcutaneous injections of risperidone (1.0 and 3.0 mg/kg) or vehicle from postnatal day 14–42. Locomotor responses to one of three doses (0.03, 0.1, and 0.3 mg/kg) of apomorphine or quinpirole were tested once a week for four weeks beginning on postnatal day 76 and 147 for each respective drug. The locomotor activity elicited by the two lower doses of apomorphine was significantly greater in adult rats, especially females, administered risperidone early in life. Adult rats administered risperidone early in life also showed more locomotor activity after the low dose of quinpirole. Overall, female rats were more sensitive to the locomotor effects of each agonist. In a separate group of rats administered risperidone early in life, autoradiography of forebrain D<sub>2</sub> receptors at postnatal day 62 revealed a modest increase in D<sub>2</sub> receptor density in the medial caudate. These results provide evidence that early-life risperidone administration can produce long-lasting changes in dopamine receptor function and density.</p></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824003279\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003279","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Early-life risperidone alters locomotor responses to apomorphine and quinpirole in adulthood
An escalating trend of antipsychotic drug use in children with ADHD, disruptive behavior disorder, or mood disorders has raised concerns about the impact of these drugs on brain development. Since antipsychotics chiefly target dopamine receptors, it is important to assay the function of these receptors after early-life antipsychotic administration. Using rats as a model, we examined the effects of early-life risperidone, the most prescribed antipsychotic drug in children, on locomotor responses to the dopamine D1/D2 receptor agonist, apomorphine, and the D2/D3 receptor agonist, quinpirole. Female and male Long-Evans rats received daily subcutaneous injections of risperidone (1.0 and 3.0 mg/kg) or vehicle from postnatal day 14–42. Locomotor responses to one of three doses (0.03, 0.1, and 0.3 mg/kg) of apomorphine or quinpirole were tested once a week for four weeks beginning on postnatal day 76 and 147 for each respective drug. The locomotor activity elicited by the two lower doses of apomorphine was significantly greater in adult rats, especially females, administered risperidone early in life. Adult rats administered risperidone early in life also showed more locomotor activity after the low dose of quinpirole. Overall, female rats were more sensitive to the locomotor effects of each agonist. In a separate group of rats administered risperidone early in life, autoradiography of forebrain D2 receptors at postnatal day 62 revealed a modest increase in D2 receptor density in the medial caudate. These results provide evidence that early-life risperidone administration can produce long-lasting changes in dopamine receptor function and density.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.