Wenyuan Niu, Chengqiu Lu, Qiushi Zou, Yunbing Luo, Xuan Wang, Hanyu Xiang, Fan Zhang, Xing Gao, Song Xing, Xuan Wei, Wentai Lou, Dailong Huang, Cheng Wang, Dongqing Jiang, Xiaofeng Wan, Zhongyun Zhang, Huanghao Yin, Jiayang Lu, Feng Wang, Xianfeng Huang, Yinghua Li
{"title":"基于三维建模的考古发掘动态记录:中国湖北云县 3 号人头骨化石发掘案例研究","authors":"Wenyuan Niu, Chengqiu Lu, Qiushi Zou, Yunbing Luo, Xuan Wang, Hanyu Xiang, Fan Zhang, Xing Gao, Song Xing, Xuan Wei, Wentai Lou, Dailong Huang, Cheng Wang, Dongqing Jiang, Xiaofeng Wan, Zhongyun Zhang, Huanghao Yin, Jiayang Lu, Feng Wang, Xianfeng Huang, Yinghua Li","doi":"10.1186/s40494-024-01356-5","DOIUrl":null,"url":null,"abstract":"<p>Documenting tangible cultural heritage using 3D modeling techniques is gradually becoming an indispensable component of archaeological practice. The 3D modeling techniques based on photogrammetry and LiDAR scanning enable high-accuracy and high-realistic reconstruction of archaeological sites, and have been proven a powerful tool for documenting archaeological excavations. However, dynamically documenting an ongoing excavation using these techniques is still considered tedious, time-consuming, expensive, and dependent on expertise. Moreover, the application of 3D modeling techniques in archaeological excavations still faces some technical challenges, such as modeling with multi-source and multi-scale data, fusing local models at different times into a whole, achieving fast modeling while GPU workstations are not available in the field, and evaluating the quality of 3D models. As a result, there are still very few archaeological teams deeply engaged in dynamic documentation with 3D modeling techniques, and traditional drawing sketches and taking photographs still dominate. In these senses, documenting the archaeological excavation at the <i>Yunxian Man</i> site (located in Hubei, China) is an invaluable opportunity for exploration and practice. Archaeologists determined to conduct dynamically documenting at the beginning of the 6th excavation project for the site, and established a rotation system to reconcile physical excavation with digital preservation. Through repeated practice and communication, we proposed a workflow and pursued several new methods to enhance the feasibility of dynamically documenting, and obtained 4D models of the ongoing archaeological excavations. In 2022, the <i>Yunxian Man</i> site unearthed the most intact fossil of hominin cranium from about one million years ago in the Eurasian continent, preserving important and scarce anatomical features of early humans in Asia. As the original taphonomic context of the fossil corroded away during physical excavations, the digital documentation consisting of 4D models serves as permanent original data source in subsequent archaeological research. Moreover, we obtained cross-scale 3D models from geographical environment to archaeological site, excavation area, and cultural remains, and all of these 3D models are in an actual, unified coordinate framework. Thus, we can contribute to multidisciplinary cross-collaborative research through data sharing. Considering that digital documentations serve a great value in archaeological research, this paper focuses on sharing the workflow and methods to facilitate digital preservation for more archaeological projects.</p>","PeriodicalId":13109,"journal":{"name":"Heritage Science","volume":"75 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamically documenting archaeological excavations based on 3D modeling: a case study of the excavation of the #3 fossil of hominin cranium from Yunxian, Hubei, China\",\"authors\":\"Wenyuan Niu, Chengqiu Lu, Qiushi Zou, Yunbing Luo, Xuan Wang, Hanyu Xiang, Fan Zhang, Xing Gao, Song Xing, Xuan Wei, Wentai Lou, Dailong Huang, Cheng Wang, Dongqing Jiang, Xiaofeng Wan, Zhongyun Zhang, Huanghao Yin, Jiayang Lu, Feng Wang, Xianfeng Huang, Yinghua Li\",\"doi\":\"10.1186/s40494-024-01356-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Documenting tangible cultural heritage using 3D modeling techniques is gradually becoming an indispensable component of archaeological practice. The 3D modeling techniques based on photogrammetry and LiDAR scanning enable high-accuracy and high-realistic reconstruction of archaeological sites, and have been proven a powerful tool for documenting archaeological excavations. However, dynamically documenting an ongoing excavation using these techniques is still considered tedious, time-consuming, expensive, and dependent on expertise. Moreover, the application of 3D modeling techniques in archaeological excavations still faces some technical challenges, such as modeling with multi-source and multi-scale data, fusing local models at different times into a whole, achieving fast modeling while GPU workstations are not available in the field, and evaluating the quality of 3D models. As a result, there are still very few archaeological teams deeply engaged in dynamic documentation with 3D modeling techniques, and traditional drawing sketches and taking photographs still dominate. In these senses, documenting the archaeological excavation at the <i>Yunxian Man</i> site (located in Hubei, China) is an invaluable opportunity for exploration and practice. Archaeologists determined to conduct dynamically documenting at the beginning of the 6th excavation project for the site, and established a rotation system to reconcile physical excavation with digital preservation. Through repeated practice and communication, we proposed a workflow and pursued several new methods to enhance the feasibility of dynamically documenting, and obtained 4D models of the ongoing archaeological excavations. In 2022, the <i>Yunxian Man</i> site unearthed the most intact fossil of hominin cranium from about one million years ago in the Eurasian continent, preserving important and scarce anatomical features of early humans in Asia. As the original taphonomic context of the fossil corroded away during physical excavations, the digital documentation consisting of 4D models serves as permanent original data source in subsequent archaeological research. Moreover, we obtained cross-scale 3D models from geographical environment to archaeological site, excavation area, and cultural remains, and all of these 3D models are in an actual, unified coordinate framework. Thus, we can contribute to multidisciplinary cross-collaborative research through data sharing. Considering that digital documentations serve a great value in archaeological research, this paper focuses on sharing the workflow and methods to facilitate digital preservation for more archaeological projects.</p>\",\"PeriodicalId\":13109,\"journal\":{\"name\":\"Heritage Science\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heritage Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1186/s40494-024-01356-5\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heritage Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1186/s40494-024-01356-5","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Dynamically documenting archaeological excavations based on 3D modeling: a case study of the excavation of the #3 fossil of hominin cranium from Yunxian, Hubei, China
Documenting tangible cultural heritage using 3D modeling techniques is gradually becoming an indispensable component of archaeological practice. The 3D modeling techniques based on photogrammetry and LiDAR scanning enable high-accuracy and high-realistic reconstruction of archaeological sites, and have been proven a powerful tool for documenting archaeological excavations. However, dynamically documenting an ongoing excavation using these techniques is still considered tedious, time-consuming, expensive, and dependent on expertise. Moreover, the application of 3D modeling techniques in archaeological excavations still faces some technical challenges, such as modeling with multi-source and multi-scale data, fusing local models at different times into a whole, achieving fast modeling while GPU workstations are not available in the field, and evaluating the quality of 3D models. As a result, there are still very few archaeological teams deeply engaged in dynamic documentation with 3D modeling techniques, and traditional drawing sketches and taking photographs still dominate. In these senses, documenting the archaeological excavation at the Yunxian Man site (located in Hubei, China) is an invaluable opportunity for exploration and practice. Archaeologists determined to conduct dynamically documenting at the beginning of the 6th excavation project for the site, and established a rotation system to reconcile physical excavation with digital preservation. Through repeated practice and communication, we proposed a workflow and pursued several new methods to enhance the feasibility of dynamically documenting, and obtained 4D models of the ongoing archaeological excavations. In 2022, the Yunxian Man site unearthed the most intact fossil of hominin cranium from about one million years ago in the Eurasian continent, preserving important and scarce anatomical features of early humans in Asia. As the original taphonomic context of the fossil corroded away during physical excavations, the digital documentation consisting of 4D models serves as permanent original data source in subsequent archaeological research. Moreover, we obtained cross-scale 3D models from geographical environment to archaeological site, excavation area, and cultural remains, and all of these 3D models are in an actual, unified coordinate framework. Thus, we can contribute to multidisciplinary cross-collaborative research through data sharing. Considering that digital documentations serve a great value in archaeological research, this paper focuses on sharing the workflow and methods to facilitate digital preservation for more archaeological projects.
期刊介绍:
Heritage Science is an open access journal publishing original peer-reviewed research covering:
Understanding of the manufacturing processes, provenances, and environmental contexts of material types, objects, and buildings, of cultural significance including their historical significance.
Understanding and prediction of physico-chemical and biological degradation processes of cultural artefacts, including climate change, and predictive heritage studies.
Development and application of analytical and imaging methods or equipments for non-invasive, non-destructive or portable analysis of artwork and objects of cultural significance to identify component materials, degradation products and deterioration markers.
Development and application of invasive and destructive methods for understanding the provenance of objects of cultural significance.
Development and critical assessment of treatment materials and methods for artwork and objects of cultural significance.
Development and application of statistical methods and algorithms for data analysis to further understanding of culturally significant objects.
Publication of reference and corpus datasets as supplementary information to the statistical and analytical studies above.
Description of novel technologies that can assist in the understanding of cultural heritage.