Hossein Fattahimoghaddam, Patcharida Janpauk, In Ho Kim, Keerthnasre Dhandapani, Jaehee Yeom, Donghyeon Lee, Seong Woo Jo, Miso Shin, Yong Jin Jeong, Tae Kyu An
{"title":"用于光热水蒸发的 Janus 蒸发器,包括氮化碳/聚二甲基硅氧烷纳米复合材料上涂覆的纳米铜颗粒,用于三聚氰胺泡沫塑料","authors":"Hossein Fattahimoghaddam, Patcharida Janpauk, In Ho Kim, Keerthnasre Dhandapani, Jaehee Yeom, Donghyeon Lee, Seong Woo Jo, Miso Shin, Yong Jin Jeong, Tae Kyu An","doi":"10.1007/s13233-024-00295-1","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the photothermal water evaporation efficiency of Janus-structured sponges prepared from Cu nanoparticles-decorated graphitic carbon nitride/polydimethylsiloxane nanocomposites (CuCN/PDMS) and melamine foam (MF). Photothermal performance evaluation under 1 sun irradiation revealed significant temperature enhancement attributed to the incorporation of carbon nitride (CN) and copper nanoparticles (Cu NPs). Furthermore, the synergistic effect of enhanced light absorption and plasmonic localized heat generation led to remarkable improvements in water evaporation flux and efficiency, particularly evident in the CuCN/PDMS@MF evaporator, which exhibited an efficiency of 84.9%. These findings demonstrate the potential of the devised evaporators for practical applications. Additionally, real-world testing with seawater confirmed sustained functionality and resistance to salt accumulation, further emphasizing the importance of PDMS and MF as key components in the design of efficient Janus evaporators for addressing water scarcity challenges.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3><p>\nJanus-structured sponges made from Cu nanoparticles-decorated graphitic carbon nitride/PDMS nanocomposites and melamine foam (CuCN/PDMS@MF) exhibit enhanced light absorption and plasmonic heat generation, significantly improving water evaporation efficiency and offering promising solutions for practical desalination applications</p>","PeriodicalId":688,"journal":{"name":"Macromolecular Research","volume":"21 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Janus evaporators comprising Cu nanoparticle-decorated carbon nitride/polydimethylsiloxane nanocomposites coated on melamine foam for photothermal water evaporation\",\"authors\":\"Hossein Fattahimoghaddam, Patcharida Janpauk, In Ho Kim, Keerthnasre Dhandapani, Jaehee Yeom, Donghyeon Lee, Seong Woo Jo, Miso Shin, Yong Jin Jeong, Tae Kyu An\",\"doi\":\"10.1007/s13233-024-00295-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the photothermal water evaporation efficiency of Janus-structured sponges prepared from Cu nanoparticles-decorated graphitic carbon nitride/polydimethylsiloxane nanocomposites (CuCN/PDMS) and melamine foam (MF). Photothermal performance evaluation under 1 sun irradiation revealed significant temperature enhancement attributed to the incorporation of carbon nitride (CN) and copper nanoparticles (Cu NPs). Furthermore, the synergistic effect of enhanced light absorption and plasmonic localized heat generation led to remarkable improvements in water evaporation flux and efficiency, particularly evident in the CuCN/PDMS@MF evaporator, which exhibited an efficiency of 84.9%. These findings demonstrate the potential of the devised evaporators for practical applications. Additionally, real-world testing with seawater confirmed sustained functionality and resistance to salt accumulation, further emphasizing the importance of PDMS and MF as key components in the design of efficient Janus evaporators for addressing water scarcity challenges.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical abstract</h3><p>\\nJanus-structured sponges made from Cu nanoparticles-decorated graphitic carbon nitride/PDMS nanocomposites and melamine foam (CuCN/PDMS@MF) exhibit enhanced light absorption and plasmonic heat generation, significantly improving water evaporation efficiency and offering promising solutions for practical desalination applications</p>\",\"PeriodicalId\":688,\"journal\":{\"name\":\"Macromolecular Research\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13233-024-00295-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13233-024-00295-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Janus evaporators comprising Cu nanoparticle-decorated carbon nitride/polydimethylsiloxane nanocomposites coated on melamine foam for photothermal water evaporation
This study investigates the photothermal water evaporation efficiency of Janus-structured sponges prepared from Cu nanoparticles-decorated graphitic carbon nitride/polydimethylsiloxane nanocomposites (CuCN/PDMS) and melamine foam (MF). Photothermal performance evaluation under 1 sun irradiation revealed significant temperature enhancement attributed to the incorporation of carbon nitride (CN) and copper nanoparticles (Cu NPs). Furthermore, the synergistic effect of enhanced light absorption and plasmonic localized heat generation led to remarkable improvements in water evaporation flux and efficiency, particularly evident in the CuCN/PDMS@MF evaporator, which exhibited an efficiency of 84.9%. These findings demonstrate the potential of the devised evaporators for practical applications. Additionally, real-world testing with seawater confirmed sustained functionality and resistance to salt accumulation, further emphasizing the importance of PDMS and MF as key components in the design of efficient Janus evaporators for addressing water scarcity challenges.
Graphical abstract
Janus-structured sponges made from Cu nanoparticles-decorated graphitic carbon nitride/PDMS nanocomposites and melamine foam (CuCN/PDMS@MF) exhibit enhanced light absorption and plasmonic heat generation, significantly improving water evaporation efficiency and offering promising solutions for practical desalination applications
期刊介绍:
Original research on all aspects of polymer science, engineering and technology, including nanotechnology
Presents original research articles on all aspects of polymer science, engineering and technology
Coverage extends to such topics as nanotechnology, biotechnology and information technology
The English-language journal of the Polymer Society of Korea
Macromolecular Research is a scientific journal published monthly by the Polymer Society of Korea. Macromolecular Research publishes original researches on all aspects of polymer science, engineering, and technology as well as new emerging technologies using polymeric materials including nanotechnology, biotechnology, and information technology in forms of Articles, Communications, Notes, Reviews, and Feature articles.