反热传导问题中 N 值异质传导曲线的识别

IF 2.7 3区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY International Journal for Numerical Methods in Engineering Pub Date : 2024-08-02 DOI:10.1002/nme.7578
Angel A. Ciarbonetti, Sergio Idelsohn, Gisela L. Mazzieri, Ruben D. Spies
{"title":"反热传导问题中 N 值异质传导曲线的识别","authors":"Angel A. Ciarbonetti,&nbsp;Sergio Idelsohn,&nbsp;Gisela L. Mazzieri,&nbsp;Ruben D. Spies","doi":"10.1002/nme.7578","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this article we deal with the problem of determining a non-homogeneous <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math>-valued heat conductivity profile in a steady-state heat conduction boundary-value problem with mixed Dirichlet-Neumann boundary conditions over a bounded domain in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow>\n <mi>ℝ</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msup>\n </mrow>\n <annotation>$$ {\\mathbb{R}}^n $$</annotation>\n </semantics></math>, from the knowledge of the temperature field over the whole domain. In a previous work we developed a method based on a variational approach of the PDE leading to an optimality equation which is then projected into a finite dimensional space. Discretization of the optimality equation then yields a linear although severely ill-posed equation which is then regularized via appropriate ad-hoc penalizers based upon a-priori information about the conductivities of all materials present. This process results in a generalized Tikhonov-Phillips functional whose global minimizer yields our approximate solution to the inverse problem. In our previous work we showed that this approach yields quite satisfactory results in the cases of two different conductivities. We considered here an appropriate extension of that approach for the <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n </mrow>\n <annotation>$$ N $$</annotation>\n </semantics></math> materials case and show a few numerical examples for the case <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$$ N=3 $$</annotation>\n </semantics></math> in which the method is able to produce very good reconstructions of the exact solution.</p>\n </div>","PeriodicalId":13699,"journal":{"name":"International Journal for Numerical Methods in Engineering","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of an N-valued heterogeneous conductivity profile in an inverse heat conduction problem\",\"authors\":\"Angel A. Ciarbonetti,&nbsp;Sergio Idelsohn,&nbsp;Gisela L. Mazzieri,&nbsp;Ruben D. Spies\",\"doi\":\"10.1002/nme.7578\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this article we deal with the problem of determining a non-homogeneous <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math>-valued heat conductivity profile in a steady-state heat conduction boundary-value problem with mixed Dirichlet-Neumann boundary conditions over a bounded domain in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mrow>\\n <mi>ℝ</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$$ {\\\\mathbb{R}}^n $$</annotation>\\n </semantics></math>, from the knowledge of the temperature field over the whole domain. In a previous work we developed a method based on a variational approach of the PDE leading to an optimality equation which is then projected into a finite dimensional space. Discretization of the optimality equation then yields a linear although severely ill-posed equation which is then regularized via appropriate ad-hoc penalizers based upon a-priori information about the conductivities of all materials present. This process results in a generalized Tikhonov-Phillips functional whose global minimizer yields our approximate solution to the inverse problem. In our previous work we showed that this approach yields quite satisfactory results in the cases of two different conductivities. We considered here an appropriate extension of that approach for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$$ N $$</annotation>\\n </semantics></math> materials case and show a few numerical examples for the case <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation>$$ N=3 $$</annotation>\\n </semantics></math> in which the method is able to produce very good reconstructions of the exact solution.</p>\\n </div>\",\"PeriodicalId\":13699,\"journal\":{\"name\":\"International Journal for Numerical Methods in Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical Methods in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/nme.7578\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nme.7578","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们讨论了如何根据对整个域的温度场的了解,在一个有界域上确定一个稳态热传导边界值问题中的非均质-值热传导剖面,该问题具有混合 Dirichlet-Neumann 边界条件。在之前的研究中,我们开发了一种基于变分法的方法,通过该方法可以得到一个最优方程,然后将该方程投影到有限维空间中。优化方程的离散化产生了一个线性方程,虽然这个方程存在严重的问题,但我们会根据所有存在材料的电导率信息,通过适当的临时惩罚器对其进行正则化。这一过程会产生一个广义的 Tikhonov-Phillips 函数,其全局最小值会产生逆问题的近似解。在我们之前的工作中,我们已经证明这种方法在两种不同电导率的情况下都能产生令人满意的结果。在此,我们考虑将该方法适当扩展到材料情况,并展示了几个数值示例,在这些示例中,该方法能够很好地重建精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of an N-valued heterogeneous conductivity profile in an inverse heat conduction problem

In this article we deal with the problem of determining a non-homogeneous N $$ N $$ -valued heat conductivity profile in a steady-state heat conduction boundary-value problem with mixed Dirichlet-Neumann boundary conditions over a bounded domain in n $$ {\mathbb{R}}^n $$ , from the knowledge of the temperature field over the whole domain. In a previous work we developed a method based on a variational approach of the PDE leading to an optimality equation which is then projected into a finite dimensional space. Discretization of the optimality equation then yields a linear although severely ill-posed equation which is then regularized via appropriate ad-hoc penalizers based upon a-priori information about the conductivities of all materials present. This process results in a generalized Tikhonov-Phillips functional whose global minimizer yields our approximate solution to the inverse problem. In our previous work we showed that this approach yields quite satisfactory results in the cases of two different conductivities. We considered here an appropriate extension of that approach for the N $$ N $$ materials case and show a few numerical examples for the case N = 3 $$ N=3 $$ in which the method is able to produce very good reconstructions of the exact solution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
6.90%
发文量
276
审稿时长
5.3 months
期刊介绍: The International Journal for Numerical Methods in Engineering publishes original papers describing significant, novel developments in numerical methods that are applicable to engineering problems. The Journal is known for welcoming contributions in a wide range of areas in computational engineering, including computational issues in model reduction, uncertainty quantification, verification and validation, inverse analysis and stochastic methods, optimisation, element technology, solution techniques and parallel computing, damage and fracture, mechanics at micro and nano-scales, low-speed fluid dynamics, fluid-structure interaction, electromagnetics, coupled diffusion phenomena, and error estimation and mesh generation. It is emphasized that this is by no means an exhaustive list, and particularly papers on multi-scale, multi-physics or multi-disciplinary problems, and on new, emerging topics are welcome.
期刊最新文献
Issue Information Issue Information DCEM: A deep complementary energy method for linear elasticity Issue Information Featured Cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1