利用机器学习分析首席执行官的职业模式:以美国大学毕业生为例

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Data Technologies and Applications Pub Date : 2024-08-02 DOI:10.1108/dta-04-2023-0132
Chia Yu Hung, Eddie Jeng, Li Chen Cheng
{"title":"利用机器学习分析首席执行官的职业模式:以美国大学毕业生为例","authors":"Chia Yu Hung, Eddie Jeng, Li Chen Cheng","doi":"10.1108/dta-04-2023-0132","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study explores the career trajectories of Chief Executive Officers (CEOs) to uncover unique characteristics that contribute to their success. By utilizing web scraping and machine learning techniques, over two thousand CEO profiles from LinkedIn are analyzed to understand patterns in their career paths. This study offers an alternative approach compared to the predominantly qualitative research methods employed in previous research.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study proposes a framework for analyzing CEO career patterns. Job titles and company information are encoded using the Standard Occupational Classification (SOC) scheme. The study employs the Needleman-Wunsch optimal matching algorithm and an agglomerative approach to construct distance matrices and cluster CEO career paths.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>This study gathered data on the career transition processes of graduates from several renowned public and private universities in the United States via LinkedIn. Employing machine learning techniques, the analysis revealed diverse career trajectories. The findings offer career guidance for individuals from various academic backgrounds aspiring to become CEOs.</p><!--/ Abstract__block -->\n<h3>Research limitations/implications</h3>\n<p>The building of a career sequence that takes into account the number of years requires integers. Numbers that are not integers have been rounded up to facilitate the optimal matching process but this approach prevents a perfectly accurate representation of time worked.</p><!--/ Abstract__block -->\n<h3>Practical implications</h3>\n<p>This study makes an original contribution to the field of career pattern analysis by disclosing the distinct career path groups of CEOs using the rich LinkedIn online dataset. Note that our CEO profiles are not restricted in any industry or specific career paths followed to becoming CEOs. In light of the fact that individuals who hold CEO positions are usually perceived by society as successful, we are interested in finding the characteristics behind their success and whether either the title held or the company they remain at show patterns in making them who they are today.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>As a matter of fact, nearly all CEOs had previous experience working for a non-Fortune organization before joining a Fortune company. Of those who have worked for Fortune firms, the number of CEOs with experience in Fortune 500 forms exceeded those with experience in Fortune 1,000 firms.</p><!--/ Abstract__block -->","PeriodicalId":56156,"journal":{"name":"Data Technologies and Applications","volume":"79 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of CEO career patterns using machine learning: taking US university graduates as an example\",\"authors\":\"Chia Yu Hung, Eddie Jeng, Li Chen Cheng\",\"doi\":\"10.1108/dta-04-2023-0132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>This study explores the career trajectories of Chief Executive Officers (CEOs) to uncover unique characteristics that contribute to their success. By utilizing web scraping and machine learning techniques, over two thousand CEO profiles from LinkedIn are analyzed to understand patterns in their career paths. This study offers an alternative approach compared to the predominantly qualitative research methods employed in previous research.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>This study proposes a framework for analyzing CEO career patterns. Job titles and company information are encoded using the Standard Occupational Classification (SOC) scheme. The study employs the Needleman-Wunsch optimal matching algorithm and an agglomerative approach to construct distance matrices and cluster CEO career paths.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>This study gathered data on the career transition processes of graduates from several renowned public and private universities in the United States via LinkedIn. Employing machine learning techniques, the analysis revealed diverse career trajectories. The findings offer career guidance for individuals from various academic backgrounds aspiring to become CEOs.</p><!--/ Abstract__block -->\\n<h3>Research limitations/implications</h3>\\n<p>The building of a career sequence that takes into account the number of years requires integers. Numbers that are not integers have been rounded up to facilitate the optimal matching process but this approach prevents a perfectly accurate representation of time worked.</p><!--/ Abstract__block -->\\n<h3>Practical implications</h3>\\n<p>This study makes an original contribution to the field of career pattern analysis by disclosing the distinct career path groups of CEOs using the rich LinkedIn online dataset. Note that our CEO profiles are not restricted in any industry or specific career paths followed to becoming CEOs. In light of the fact that individuals who hold CEO positions are usually perceived by society as successful, we are interested in finding the characteristics behind their success and whether either the title held or the company they remain at show patterns in making them who they are today.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>As a matter of fact, nearly all CEOs had previous experience working for a non-Fortune organization before joining a Fortune company. Of those who have worked for Fortune firms, the number of CEOs with experience in Fortune 500 forms exceeded those with experience in Fortune 1,000 firms.</p><!--/ Abstract__block -->\",\"PeriodicalId\":56156,\"journal\":{\"name\":\"Data Technologies and Applications\",\"volume\":\"79 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data Technologies and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/dta-04-2023-0132\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Technologies and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/dta-04-2023-0132","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究探讨了首席执行官(CEO)的职业轨迹,揭示了有助于他们成功的独特特征。本研究利用网络搜索和机器学习技术,分析了 LinkedIn 上两千多名首席执行官的个人资料,以了解他们的职业道路模式。与以往研究中主要采用的定性研究方法相比,本研究提供了另一种方法。设计/方法/途径本研究提出了一个分析 CEO 职业模式的框架。职称和公司信息采用标准职业分类(SOC)方案进行编码。研究采用Needleman-Wunsch最优匹配算法和聚类方法来构建距离矩阵,并对CEO的职业路径进行聚类。研究结果本研究通过LinkedIn收集了美国几所著名公立和私立大学毕业生的职业转换过程数据。利用机器学习技术,分析揭示了多样化的职业轨迹。研究局限/意义建立一个考虑到年数的职业序列需要整数。为了便于优化匹配过程,非整数的数字被四舍五入,但这种方法无法完全准确地反映工作时间。实际意义本研究利用丰富的 LinkedIn 在线数据集,揭示了 CEO 的不同职业路径群体,为职业模式分析领域做出了原创性贡献。请注意,我们的首席执行官档案并不局限于任何行业或成为首席执行官的特定职业道路。鉴于担任首席执行官职位的人通常被社会视为成功人士,我们有兴趣找到他们成功背后的特征,以及所担任的头衔或所待的公司是否显示出使他们成为今天这样的人的模式。在那些曾在《财富》公司工作过的首席执行官中,曾在《财富》500 强企业工作过的人数超过了曾在《财富》1000 强企业工作过的人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of CEO career patterns using machine learning: taking US university graduates as an example

Purpose

This study explores the career trajectories of Chief Executive Officers (CEOs) to uncover unique characteristics that contribute to their success. By utilizing web scraping and machine learning techniques, over two thousand CEO profiles from LinkedIn are analyzed to understand patterns in their career paths. This study offers an alternative approach compared to the predominantly qualitative research methods employed in previous research.

Design/methodology/approach

This study proposes a framework for analyzing CEO career patterns. Job titles and company information are encoded using the Standard Occupational Classification (SOC) scheme. The study employs the Needleman-Wunsch optimal matching algorithm and an agglomerative approach to construct distance matrices and cluster CEO career paths.

Findings

This study gathered data on the career transition processes of graduates from several renowned public and private universities in the United States via LinkedIn. Employing machine learning techniques, the analysis revealed diverse career trajectories. The findings offer career guidance for individuals from various academic backgrounds aspiring to become CEOs.

Research limitations/implications

The building of a career sequence that takes into account the number of years requires integers. Numbers that are not integers have been rounded up to facilitate the optimal matching process but this approach prevents a perfectly accurate representation of time worked.

Practical implications

This study makes an original contribution to the field of career pattern analysis by disclosing the distinct career path groups of CEOs using the rich LinkedIn online dataset. Note that our CEO profiles are not restricted in any industry or specific career paths followed to becoming CEOs. In light of the fact that individuals who hold CEO positions are usually perceived by society as successful, we are interested in finding the characteristics behind their success and whether either the title held or the company they remain at show patterns in making them who they are today.

Originality/value

As a matter of fact, nearly all CEOs had previous experience working for a non-Fortune organization before joining a Fortune company. Of those who have worked for Fortune firms, the number of CEOs with experience in Fortune 500 forms exceeded those with experience in Fortune 1,000 firms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data Technologies and Applications
Data Technologies and Applications Social Sciences-Library and Information Sciences
CiteScore
3.80
自引率
6.20%
发文量
29
期刊介绍: Previously published as: Program Online from: 2018 Subject Area: Information & Knowledge Management, Library Studies
期刊最新文献
Understanding customer behavior by mapping complaints to personality based on social media textual data A systematic review of the use of FHIR to support clinical research, public health and medical education Novel framework for learning performance prediction using pattern identification and deep learning A comparative analysis of job satisfaction prediction models using machine learning: a mixed-method approach Assessing the alignment of corporate ESG disclosures with the UN sustainable development goals: a BERT-based text analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1