{"title":"交变磁场下液态金属的热对流","authors":"Julien Guillou , Wladimir Bergez , Rémi Zamansky , Hervé Ayroles , Pascal Piluso , Philippe Tordjeman","doi":"10.1016/j.euromechflu.2024.07.015","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this work is to measure the heat transfer of a liquid metal in a cylindrical cell under the conjugate effects of a temperature difference and a Lorentz force generated by an alternating current in a coil. The experimental results are compared to recent direct numerical simulations (DNS) (Guillou et al., 2022). 25 experiments are performed for a large range of frequency <span><math><mi>f</mi></math></span>, ac intensity amplitude <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and temperature difference between the top and bottom walls <span><math><mrow><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>: <span><math><mrow><mn>15</mn><mo>≤</mo><mi>f</mi><mo>≤</mo><mn>1000</mn><mspace></mspace><mi>Hz</mi></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>≤</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>67</mn></mrow></math></span> A and <span><math><mrow><mn>6</mn><mo>≤</mo><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>11</mn></mrow></math></span> K. In these experiments, the Hartmann number <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>, the shielding parameter <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and Rayleigh number <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> vary in the following range: <span><math><mrow><mn>6</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>200</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>≤</mo><mn>70</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>≤</mo><mi>R</mi><mi>a</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. The experiments with an ac magnetic field are compared with the Rayleigh–Bénard convection (RBC) experiments under the same thermal conditions. Three rings of thermocouples allow characterizing the fluid temperature distribution during the convection. The heat flux at the bottom and top walls are also measured. We observe a very good agreement between the experimental results and the DNS results. As previously shown by numerical simulations, a master curve of <span><math><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow></math></span> vs. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> allows predicting the evolution of the heat transfer under different conditions of temperature difference and Lorentz force. Here <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow></math></span> are the Nusselt number and a Péclet number based on the Lorentz force, and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> are the total power deposited by the Joule effect and the total conduction heat flux without motion, respectively. The experiments show that <span><math><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"108 ","pages":"Pages 180-186"},"PeriodicalIF":2.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal convection of a liquid metal under an alternating magnetic field\",\"authors\":\"Julien Guillou , Wladimir Bergez , Rémi Zamansky , Hervé Ayroles , Pascal Piluso , Philippe Tordjeman\",\"doi\":\"10.1016/j.euromechflu.2024.07.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The objective of this work is to measure the heat transfer of a liquid metal in a cylindrical cell under the conjugate effects of a temperature difference and a Lorentz force generated by an alternating current in a coil. The experimental results are compared to recent direct numerical simulations (DNS) (Guillou et al., 2022). 25 experiments are performed for a large range of frequency <span><math><mi>f</mi></math></span>, ac intensity amplitude <span><math><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> and temperature difference between the top and bottom walls <span><math><mrow><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></math></span>: <span><math><mrow><mn>15</mn><mo>≤</mo><mi>f</mi><mo>≤</mo><mn>1000</mn><mspace></mspace><mi>Hz</mi></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>≤</mo><msub><mrow><mi>I</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>67</mn></mrow></math></span> A and <span><math><mrow><mn>6</mn><mo>≤</mo><mi>Δ</mi><msub><mrow><mi>T</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≤</mo><mn>11</mn></mrow></math></span> K. In these experiments, the Hartmann number <span><math><mrow><mi>H</mi><mi>a</mi></mrow></math></span>, the shielding parameter <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub></math></span> and Rayleigh number <span><math><mrow><mi>R</mi><mi>a</mi></mrow></math></span> vary in the following range: <span><math><mrow><mn>6</mn><mo>≤</mo><mi>H</mi><mi>a</mi><mo>≤</mo><mn>200</mn></mrow></math></span>, <span><math><mrow><mn>1</mn><mo>≤</mo><msub><mrow><mi>S</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>≤</mo><mn>70</mn></mrow></math></span>, <span><math><mrow><mn>2</mn><mo>.</mo><mn>3</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup><mo>≤</mo><mi>R</mi><mi>a</mi><mo>≤</mo><mn>4</mn><mo>.</mo><mn>1</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. The experiments with an ac magnetic field are compared with the Rayleigh–Bénard convection (RBC) experiments under the same thermal conditions. Three rings of thermocouples allow characterizing the fluid temperature distribution during the convection. The heat flux at the bottom and top walls are also measured. We observe a very good agreement between the experimental results and the DNS results. As previously shown by numerical simulations, a master curve of <span><math><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow></math></span> vs. <span><math><mrow><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span> allows predicting the evolution of the heat transfer under different conditions of temperature difference and Lorentz force. Here <span><math><mrow><mi>N</mi><mi>u</mi></mrow></math></span> and <span><math><mrow><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub></mrow></math></span> are the Nusselt number and a Péclet number based on the Lorentz force, and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> are the total power deposited by the Joule effect and the total conduction heat flux without motion, respectively. The experiments show that <span><math><mrow><mi>N</mi><mi>u</mi><mo>/</mo><mi>P</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>ω</mi></mrow></msub><mo>∼</mo><msup><mrow><mrow><mo>(</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>J</mi></mrow></msub><mo>/</mo><msub><mrow><mi>Q</mi></mrow><mrow><mi>c</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>2</mn><mo>/</mo><mn>5</mn></mrow></msup></mrow></math></span>.</p></div>\",\"PeriodicalId\":11985,\"journal\":{\"name\":\"European Journal of Mechanics B-fluids\",\"volume\":\"108 \",\"pages\":\"Pages 180-186\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics B-fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997754624001134\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001134","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Thermal convection of a liquid metal under an alternating magnetic field
The objective of this work is to measure the heat transfer of a liquid metal in a cylindrical cell under the conjugate effects of a temperature difference and a Lorentz force generated by an alternating current in a coil. The experimental results are compared to recent direct numerical simulations (DNS) (Guillou et al., 2022). 25 experiments are performed for a large range of frequency , ac intensity amplitude and temperature difference between the top and bottom walls : , A and K. In these experiments, the Hartmann number , the shielding parameter and Rayleigh number vary in the following range: , , . The experiments with an ac magnetic field are compared with the Rayleigh–Bénard convection (RBC) experiments under the same thermal conditions. Three rings of thermocouples allow characterizing the fluid temperature distribution during the convection. The heat flux at the bottom and top walls are also measured. We observe a very good agreement between the experimental results and the DNS results. As previously shown by numerical simulations, a master curve of vs. allows predicting the evolution of the heat transfer under different conditions of temperature difference and Lorentz force. Here and are the Nusselt number and a Péclet number based on the Lorentz force, and and are the total power deposited by the Joule effect and the total conduction heat flux without motion, respectively. The experiments show that .
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.