用于癌症免疫疗法的光疗纳米试剂

IF 33.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Progress in Materials Science Pub Date : 2024-07-30 DOI:10.1016/j.pmatsci.2024.101347
Maomao He , Ming Xiao , Ran Wang, Jiangli Fan, Xiaojun Peng, Wen Sun
{"title":"用于癌症免疫疗法的光疗纳米试剂","authors":"Maomao He ,&nbsp;Ming Xiao ,&nbsp;Ran Wang,&nbsp;Jiangli Fan,&nbsp;Xiaojun Peng,&nbsp;Wen Sun","doi":"10.1016/j.pmatsci.2024.101347","DOIUrl":null,"url":null,"abstract":"<div><p>Phototherapy, referring to photodynamic/photothermal therapy, has been extensively validated to promote enhanced immunotherapeutic effects by stimulating tumor cell immunogenic death. Photoimmunotherapy has been persistently investigated to establish potent antitumor effects against primary and distant tumors, synchronously eliciting powerful immunological memory effects, thus ultimately preventing and eradicating rechallenged tumors. Phototherapeutic nanoagents play essential roles in ensuring the sufficient efficacy of photoimmunotherapy, which provides a flexible platform to integrate multifunctional types of phototherapy into a single platform. In particular, tailored nanoparticles are available to amplify tumor immunogenicity and to modulate the immunosuppressive tumor microenvironment simultaneously and spatiotemporally for the treatment of cancers. In this review, we summarized commonly adopted strategies to achieve enhanced cancer immunotherapies induced by conventionally designed phototherapeutic nanoagents. We also analyzed the immunotherapeutic performance and characteristics of phototherapy in detail. The manuscript implies our thoughts on the following aspects: directional design of photosensitizing agents, functional construction of nanomedicines, rational modulation of immunotherapy, and augmented phototherapeutic effects.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"147 ","pages":"Article 101347"},"PeriodicalIF":33.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0079642524001166/pdfft?md5=f6b5be11d359f87bbfc615b30e0600a4&pid=1-s2.0-S0079642524001166-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Phototherapeutic nanoagents for cancer immunotherapy\",\"authors\":\"Maomao He ,&nbsp;Ming Xiao ,&nbsp;Ran Wang,&nbsp;Jiangli Fan,&nbsp;Xiaojun Peng,&nbsp;Wen Sun\",\"doi\":\"10.1016/j.pmatsci.2024.101347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Phototherapy, referring to photodynamic/photothermal therapy, has been extensively validated to promote enhanced immunotherapeutic effects by stimulating tumor cell immunogenic death. Photoimmunotherapy has been persistently investigated to establish potent antitumor effects against primary and distant tumors, synchronously eliciting powerful immunological memory effects, thus ultimately preventing and eradicating rechallenged tumors. Phototherapeutic nanoagents play essential roles in ensuring the sufficient efficacy of photoimmunotherapy, which provides a flexible platform to integrate multifunctional types of phototherapy into a single platform. In particular, tailored nanoparticles are available to amplify tumor immunogenicity and to modulate the immunosuppressive tumor microenvironment simultaneously and spatiotemporally for the treatment of cancers. In this review, we summarized commonly adopted strategies to achieve enhanced cancer immunotherapies induced by conventionally designed phototherapeutic nanoagents. We also analyzed the immunotherapeutic performance and characteristics of phototherapy in detail. The manuscript implies our thoughts on the following aspects: directional design of photosensitizing agents, functional construction of nanomedicines, rational modulation of immunotherapy, and augmented phototherapeutic effects.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"147 \",\"pages\":\"Article 101347\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001166/pdfft?md5=f6b5be11d359f87bbfc615b30e0600a4&pid=1-s2.0-S0079642524001166-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524001166\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524001166","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

光疗是指光动力/光热疗法,通过刺激肿瘤细胞的免疫原性死亡来增强免疫治疗效果,这一点已得到广泛验证。人们一直在研究光免疫疗法对原发性和远处肿瘤的强效抗肿瘤作用,同步激发强大的免疫记忆效应,从而最终预防和根除再次侵袭的肿瘤。光疗纳米试剂在确保光免疫疗法充分发挥疗效方面发挥着至关重要的作用,它提供了一个灵活的平台,可将多功能类型的光疗整合到单一平台中。特别是,量身定制的纳米粒子可同时和时空地放大肿瘤免疫原性和调节免疫抑制性肿瘤微环境,用于治疗癌症。在这篇综述中,我们总结了常规设计的光治疗纳米试剂实现增强癌症免疫疗法的常用策略。我们还详细分析了光疗的免疫治疗性能和特点。稿件中包含了我们对以下几个方面的思考:光敏剂的定向设计、纳米药物的功能构建、免疫疗法的合理调节以及增强光疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phototherapeutic nanoagents for cancer immunotherapy

Phototherapy, referring to photodynamic/photothermal therapy, has been extensively validated to promote enhanced immunotherapeutic effects by stimulating tumor cell immunogenic death. Photoimmunotherapy has been persistently investigated to establish potent antitumor effects against primary and distant tumors, synchronously eliciting powerful immunological memory effects, thus ultimately preventing and eradicating rechallenged tumors. Phototherapeutic nanoagents play essential roles in ensuring the sufficient efficacy of photoimmunotherapy, which provides a flexible platform to integrate multifunctional types of phototherapy into a single platform. In particular, tailored nanoparticles are available to amplify tumor immunogenicity and to modulate the immunosuppressive tumor microenvironment simultaneously and spatiotemporally for the treatment of cancers. In this review, we summarized commonly adopted strategies to achieve enhanced cancer immunotherapies induced by conventionally designed phototherapeutic nanoagents. We also analyzed the immunotherapeutic performance and characteristics of phototherapy in detail. The manuscript implies our thoughts on the following aspects: directional design of photosensitizing agents, functional construction of nanomedicines, rational modulation of immunotherapy, and augmented phototherapeutic effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Materials Science
Progress in Materials Science 工程技术-材料科学:综合
CiteScore
59.60
自引率
0.80%
发文量
101
审稿时长
11.4 months
期刊介绍: Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications. The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms. Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC). Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.
期刊最新文献
Electrothermally activated soft materials: Mechanisms, methods and applications Photothermal fabrics for solar-driven seawater desalination Editorial Board Quantum dots@layered double hydroxides: Emerging nanocomposites for multifaceted applications Thermoelectric materials and applications in buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1