Ca II K 指数与太阳风参数的跨尺度相位关系:空间气候聚焦

IF 2.7 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS Solar Physics Pub Date : 2024-08-02 DOI:10.1007/s11207-024-02346-3
Raffaele Reda, Luca Giovannelli, Tommaso Alberti
{"title":"Ca II K 指数与太阳风参数的跨尺度相位关系:空间气候聚焦","authors":"Raffaele Reda,&nbsp;Luca Giovannelli,&nbsp;Tommaso Alberti","doi":"10.1007/s11207-024-02346-3","DOIUrl":null,"url":null,"abstract":"<div><p>The solar wind, representing one of the most impacting phenomena in the circum-terrestrial space, constitutes one of the several manifestations of the magnetic activity of the Sun. With the aim of shedding light on the scales beyond the rotational period of the Sun (i.e., Space Climate scales), this study investigates the phase relationship of a solar activity physical proxy, the Ca II K index, with solar wind properties measured near the Earth, over the whole space era (last five solar cycles). Using a powerful tool such as the Hilbert–Huang transform, we investigate the dependence of their phase coherence on the obtained time scale components. Phase coherence at the same time scales is found between all the components and is also preserved between adjacent components with time scales ≳ 2 yrs. Finally, given the availability of the intrinsic modes of oscillation, we explore how the relationship of Ca II K index with solar wind parameters depends on the time scale considered. According to our results, we hypothesize the presence of a bifurcation in the phase-space Ca II K index vs. solar wind speed (dynamic pressure), where the time scale seems to act as a bifurcation parameter. This concept may be pivotal for unraveling the complex interplay between solar activity and solar wind, bearing implications from the prediction and the interpretation point of view in Space Climate studies.</p></div>","PeriodicalId":777,"journal":{"name":"Solar Physics","volume":"299 8","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11207-024-02346-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Cross-Scale Phase Relationship of the Ca II K Index with Solar Wind Parameters: A Space Climate Focus\",\"authors\":\"Raffaele Reda,&nbsp;Luca Giovannelli,&nbsp;Tommaso Alberti\",\"doi\":\"10.1007/s11207-024-02346-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The solar wind, representing one of the most impacting phenomena in the circum-terrestrial space, constitutes one of the several manifestations of the magnetic activity of the Sun. With the aim of shedding light on the scales beyond the rotational period of the Sun (i.e., Space Climate scales), this study investigates the phase relationship of a solar activity physical proxy, the Ca II K index, with solar wind properties measured near the Earth, over the whole space era (last five solar cycles). Using a powerful tool such as the Hilbert–Huang transform, we investigate the dependence of their phase coherence on the obtained time scale components. Phase coherence at the same time scales is found between all the components and is also preserved between adjacent components with time scales ≳ 2 yrs. Finally, given the availability of the intrinsic modes of oscillation, we explore how the relationship of Ca II K index with solar wind parameters depends on the time scale considered. According to our results, we hypothesize the presence of a bifurcation in the phase-space Ca II K index vs. solar wind speed (dynamic pressure), where the time scale seems to act as a bifurcation parameter. This concept may be pivotal for unraveling the complex interplay between solar activity and solar wind, bearing implications from the prediction and the interpretation point of view in Space Climate studies.</p></div>\",\"PeriodicalId\":777,\"journal\":{\"name\":\"Solar Physics\",\"volume\":\"299 8\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11207-024-02346-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11207-024-02346-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11207-024-02346-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

太阳风是环地空间影响最大的现象之一,是太阳磁活动的几种表现形式之一。为了揭示太阳自转周期以外的尺度(即空间气候尺度),本研究调查了太阳活动物理替代物 Ca II K 指数与地球附近测量到的太阳风特性在整个空间时代(过去五个太阳周期)的相位关系。利用希尔伯特-黄变换(Hilbert-Huang transform)等强大工具,我们研究了它们的相位一致性对所获得的时间尺度分量的依赖性。我们发现所有分量之间都存在相同时间尺度的相位一致性,而且时间尺度≳ 2 年的相邻分量之间也保持了相位一致性。最后,考虑到振荡的内在模式,我们探讨了 Ca II K 指数与太阳风参数的关系如何取决于所考虑的时间尺度。根据我们的研究结果,我们假设在 Ca II K 指数与太阳风速度(动压)的相空间中存在一个分岔,其中时间尺度似乎是一个分岔参数。这一概念可能是揭示太阳活动和太阳风之间复杂相互作用的关键,对空间气候研究的预测和解释都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross-Scale Phase Relationship of the Ca II K Index with Solar Wind Parameters: A Space Climate Focus

The solar wind, representing one of the most impacting phenomena in the circum-terrestrial space, constitutes one of the several manifestations of the magnetic activity of the Sun. With the aim of shedding light on the scales beyond the rotational period of the Sun (i.e., Space Climate scales), this study investigates the phase relationship of a solar activity physical proxy, the Ca II K index, with solar wind properties measured near the Earth, over the whole space era (last five solar cycles). Using a powerful tool such as the Hilbert–Huang transform, we investigate the dependence of their phase coherence on the obtained time scale components. Phase coherence at the same time scales is found between all the components and is also preserved between adjacent components with time scales ≳ 2 yrs. Finally, given the availability of the intrinsic modes of oscillation, we explore how the relationship of Ca II K index with solar wind parameters depends on the time scale considered. According to our results, we hypothesize the presence of a bifurcation in the phase-space Ca II K index vs. solar wind speed (dynamic pressure), where the time scale seems to act as a bifurcation parameter. This concept may be pivotal for unraveling the complex interplay between solar activity and solar wind, bearing implications from the prediction and the interpretation point of view in Space Climate studies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar Physics
Solar Physics 地学天文-天文与天体物理
CiteScore
5.10
自引率
17.90%
发文量
146
审稿时长
1 months
期刊介绍: Solar Physics was founded in 1967 and is the principal journal for the publication of the results of fundamental research on the Sun. The journal treats all aspects of solar physics, ranging from the internal structure of the Sun and its evolution to the outer corona and solar wind in interplanetary space. Papers on solar-terrestrial physics and on stellar research are also published when their results have a direct bearing on our understanding of the Sun.
期刊最新文献
Prediction of Geoeffective CMEs Using SOHO Images and Deep Learning A New Solar Hard X-ray Image Reconstruction Algorithm for ASO-S/HXI Based on Deep Learning Calibration and Performance of the Full-Disk Vector MagnetoGraph (FMG) on Board the Advanced Space-Based Solar Observatory (ASO-S) Evaluation of Sunspot Areas Derived by Automated Sunspot-Detection Methods Helioseismic Constraints: Past, Current, and Future Observations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1