{"title":"用于超高通量表征生物液体中化学暴露体的分层多孔薄膜","authors":"","doi":"10.1016/j.xcrp.2024.102136","DOIUrl":null,"url":null,"abstract":"<p>Exposome science captures the totality of environmental drivers of human health. However, the comprehensive determination of numerous exogenous and endogenous compounds remains extremely challenging, restricting the purpose of exposome science to characterize both external and internal exposure. Herein, we develop hierarchically porous polymers of intrinsic microporosity (HPPIM) films to achieve ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. The film’s porous properties, including three-stage micro-submicro-nanometer architectures, large specific surface area, and appropriate pore geometry and organophilicity enable fast molecular transport and high trapping capability, therefore achieving ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. Further application in a small-scale cancer study demonstrates the unique advantages of HPPIM films over existing techniques, including broad coverage of analytes, satisfactory trapping efficiency, low-volume demand on specimens, high simplicity and reusability, and drastically reduced financial cost. Our work demonstrates the great potential of HPPIM for advancing exposome science from concept to utility.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":"106 1","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchically porous films for ultrahigh-throughput characterization of chemical exposome in biological fluids\",\"authors\":\"\",\"doi\":\"10.1016/j.xcrp.2024.102136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exposome science captures the totality of environmental drivers of human health. However, the comprehensive determination of numerous exogenous and endogenous compounds remains extremely challenging, restricting the purpose of exposome science to characterize both external and internal exposure. Herein, we develop hierarchically porous polymers of intrinsic microporosity (HPPIM) films to achieve ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. The film’s porous properties, including three-stage micro-submicro-nanometer architectures, large specific surface area, and appropriate pore geometry and organophilicity enable fast molecular transport and high trapping capability, therefore achieving ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. Further application in a small-scale cancer study demonstrates the unique advantages of HPPIM films over existing techniques, including broad coverage of analytes, satisfactory trapping efficiency, low-volume demand on specimens, high simplicity and reusability, and drastically reduced financial cost. Our work demonstrates the great potential of HPPIM for advancing exposome science from concept to utility.</p>\",\"PeriodicalId\":9703,\"journal\":{\"name\":\"Cell Reports Physical Science\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Physical Science\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrp.2024.102136\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102136","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Hierarchically porous films for ultrahigh-throughput characterization of chemical exposome in biological fluids
Exposome science captures the totality of environmental drivers of human health. However, the comprehensive determination of numerous exogenous and endogenous compounds remains extremely challenging, restricting the purpose of exposome science to characterize both external and internal exposure. Herein, we develop hierarchically porous polymers of intrinsic microporosity (HPPIM) films to achieve ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. The film’s porous properties, including three-stage micro-submicro-nanometer architectures, large specific surface area, and appropriate pore geometry and organophilicity enable fast molecular transport and high trapping capability, therefore achieving ultrahigh-throughput determination of exo/endogenous molecules in biological fluids. Further application in a small-scale cancer study demonstrates the unique advantages of HPPIM films over existing techniques, including broad coverage of analytes, satisfactory trapping efficiency, low-volume demand on specimens, high simplicity and reusability, and drastically reduced financial cost. Our work demonstrates the great potential of HPPIM for advancing exposome science from concept to utility.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.