{"title":"利用 LC-MS 代谢组学分析艾滋病毒/结核病合并感染者尿液中酰基肉碱和氨基酸的特征","authors":"Charles Pretorius, Laneke Luies","doi":"10.1007/s11306-024-02161-8","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches.</p><h3 data-test=\"abstract-sub-heading\">Objective</h3><p>This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC–MS) metabolomics.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC–MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC–MS metabolomics\",\"authors\":\"Charles Pretorius, Laneke Luies\",\"doi\":\"10.1007/s11306-024-02161-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Introduction</h3><p>The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches.</p><h3 data-test=\\\"abstract-sub-heading\\\">Objective</h3><p>This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC–MS) metabolomics.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC–MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-024-02161-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02161-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
摘要
引言 人类免疫缺陷病毒(HIV)和肺结核(TB)合并感染带来了巨大的挑战,因为这些疾病之间存在复杂的相互作用,导致代谢紊乱加剧。本研究旨在利用靶向液相色谱-质谱(LC-MS)代谢组学分析 HIV 和 TB 共同感染患者尿液中酰基肉碱和氨基酸(包括 5-羟基吲哚乙酸(5-HIAA))的特征。统计分析包括单因素方差分析和 Kruskal-Wallis 检验,以确定各组之间酰基肉碱和氨基酸谱的显著差异。中链酰基肉碱水平升高表明脂肪酸氧化增加,这通常与结核病的恶病质有关。氨基酸谱的改变表明蛋白质和葡萄糖代谢发生了紊乱,显示出向糖尿病样代谢状态的转变。值得注意的是,结核病被认为是这些变化的主要驱动因素,它影响蛋白质的周转,并影响合并感染患者的能量代谢。了解这些代谢紊乱可指导开发有针对性的治疗方法并改善管理策略,最终提高这些患者的临床疗效。还需要进一步的研究来验证这些发现,并探讨它们对更多不同人群的影响。
Characterising the urinary acylcarnitine and amino acid profiles of HIV/TB co-infection, using LC–MS metabolomics
Introduction
The human immunodeficiency virus (HIV) and tuberculosis (TB) co-infection presents significant challenges due to the complex interplay between these diseases, leading to exacerbated metabolic disturbances. Understanding these metabolic profiles is crucial for improving diagnostic and therapeutic approaches.
Objective
This study aimed to characterise the urinary acylcarnitine and amino acid profiles, including 5-hydroxyindoleacetic acid (5-HIAA), in patients co-infected with HIV and TB using targeted liquid chromatography mass spectrometry (LC–MS) metabolomics.
Methods
Urine samples, categorised into HIV, TB, HIV/TB co-infected, and healthy controls, were analysed using HPLC–MS/MS. Statistical analyses included one-way ANOVA and a Kruskal-Wallis test to determine significant differences in the acylcarnitine and amino acid profiles between groups.
Results
The study revealed significant metabolic alterations, especially in TB and co-infected groups. Elevated levels of medium-chain acylcarnitines indicated increased fatty acid oxidation, commonly associated with cachexia in TB. Altered amino acid profiles suggested disruptions in protein and glucose metabolism, indicating a shift towards diabetes-like metabolic states. Notably, TB was identified as a primary driver of these changes, affecting protein turnover, and impacting energy metabolism in co-infected patients.
Conclusion
The metabolic profiling of HIV/TB co-infection highlights the profound impact of TB on metabolic pathways, which may exacerbate the clinical complexities of co-infection. Understanding these metabolic disruptions can guide the development of targeted treatments and improve management strategies, ultimately enhancing the clinical outcomes for these patients. Further research is required to validate these findings and explore their implications in larger, diverse populations.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.