TurboEdit:使用几步扩散模型进行基于文本的图像编辑

Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, Daniel Cohen-Or
{"title":"TurboEdit:使用几步扩散模型进行基于文本的图像编辑","authors":"Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, Daniel Cohen-Or","doi":"arxiv-2408.00735","DOIUrl":null,"url":null,"abstract":"Diffusion models have opened the path to a wide range of text-based image\nediting frameworks. However, these typically build on the multi-step nature of\nthe diffusion backwards process, and adapting them to distilled, fast-sampling\nmethods has proven surprisingly challenging. Here, we focus on a popular line\nof text-based editing frameworks - the ``edit-friendly'' DDPM-noise inversion\napproach. We analyze its application to fast sampling methods and categorize\nits failures into two classes: the appearance of visual artifacts, and\ninsufficient editing strength. We trace the artifacts to mismatched noise\nstatistics between inverted noises and the expected noise schedule, and suggest\na shifted noise schedule which corrects for this offset. To increase editing\nstrength, we propose a pseudo-guidance approach that efficiently increases the\nmagnitude of edits without introducing new artifacts. All in all, our method\nenables text-based image editing with as few as three diffusion steps, while\nproviding novel insights into the mechanisms behind popular text-based editing\napproaches.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models\",\"authors\":\"Gilad Deutch, Rinon Gal, Daniel Garibi, Or Patashnik, Daniel Cohen-Or\",\"doi\":\"arxiv-2408.00735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion models have opened the path to a wide range of text-based image\\nediting frameworks. However, these typically build on the multi-step nature of\\nthe diffusion backwards process, and adapting them to distilled, fast-sampling\\nmethods has proven surprisingly challenging. Here, we focus on a popular line\\nof text-based editing frameworks - the ``edit-friendly'' DDPM-noise inversion\\napproach. We analyze its application to fast sampling methods and categorize\\nits failures into two classes: the appearance of visual artifacts, and\\ninsufficient editing strength. We trace the artifacts to mismatched noise\\nstatistics between inverted noises and the expected noise schedule, and suggest\\na shifted noise schedule which corrects for this offset. To increase editing\\nstrength, we propose a pseudo-guidance approach that efficiently increases the\\nmagnitude of edits without introducing new artifacts. All in all, our method\\nenables text-based image editing with as few as three diffusion steps, while\\nproviding novel insights into the mechanisms behind popular text-based editing\\napproaches.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩散模型为各种基于文本的图像编辑框架开辟了道路。然而,这些框架通常建立在多步骤的扩散反向过程基础之上,而将它们改编为精炼、快速的采样方法已被证明具有令人惊讶的挑战性。在这里,我们将重点放在一种流行的基于文本的编辑框架上--"编辑友好 "的 DDPM 噪声反演方法。我们分析了该方法在快速采样方法中的应用,并将其故障分为两类:出现视觉伪影和编辑强度不足。我们将这些假象追溯到倒置噪声与预期噪声表之间不匹配的噪声统计,并提出了一种可纠正这种偏移的移位噪声表。为了提高编辑强度,我们提出了一种伪引导方法,这种方法可以有效地提高编辑量,同时又不会带来新的假象。总之,我们的方法只需三个扩散步骤就能实现基于文本的图像编辑,同时还为流行的基于文本编辑方法背后的机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TurboEdit: Text-Based Image Editing Using Few-Step Diffusion Models
Diffusion models have opened the path to a wide range of text-based image editing frameworks. However, these typically build on the multi-step nature of the diffusion backwards process, and adapting them to distilled, fast-sampling methods has proven surprisingly challenging. Here, we focus on a popular line of text-based editing frameworks - the ``edit-friendly'' DDPM-noise inversion approach. We analyze its application to fast sampling methods and categorize its failures into two classes: the appearance of visual artifacts, and insufficient editing strength. We trace the artifacts to mismatched noise statistics between inverted noises and the expected noise schedule, and suggest a shifted noise schedule which corrects for this offset. To increase editing strength, we propose a pseudo-guidance approach that efficiently increases the magnitude of edits without introducing new artifacts. All in all, our method enables text-based image editing with as few as three diffusion steps, while providing novel insights into the mechanisms behind popular text-based editing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1