MotionFix:文本驱动的 3D 人体动作编辑

Nikos Athanasiou, Alpár Ceske, Markos Diomataris, Michael J. Black, Gül Varol
{"title":"MotionFix:文本驱动的 3D 人体动作编辑","authors":"Nikos Athanasiou, Alpár Ceske, Markos Diomataris, Michael J. Black, Gül Varol","doi":"arxiv-2408.00712","DOIUrl":null,"url":null,"abstract":"The focus of this paper is 3D motion editing. Given a 3D human motion and a\ntextual description of the desired modification, our goal is to generate an\nedited motion as described by the text. The challenges include the lack of\ntraining data and the design of a model that faithfully edits the source\nmotion. In this paper, we address both these challenges. We build a methodology\nto semi-automatically collect a dataset of triplets in the form of (i) a source\nmotion, (ii) a target motion, and (iii) an edit text, and create the new\nMotionFix dataset. Having access to such data allows us to train a conditional\ndiffusion model, TMED, that takes both the source motion and the edit text as\ninput. We further build various baselines trained only on text-motion pairs\ndatasets, and show superior performance of our model trained on triplets. We\nintroduce new retrieval-based metrics for motion editing and establish a new\nbenchmark on the evaluation set of MotionFix. Our results are encouraging,\npaving the way for further research on finegrained motion generation. Code and\nmodels will be made publicly available.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MotionFix: Text-Driven 3D Human Motion Editing\",\"authors\":\"Nikos Athanasiou, Alpár Ceske, Markos Diomataris, Michael J. Black, Gül Varol\",\"doi\":\"arxiv-2408.00712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is 3D motion editing. Given a 3D human motion and a\\ntextual description of the desired modification, our goal is to generate an\\nedited motion as described by the text. The challenges include the lack of\\ntraining data and the design of a model that faithfully edits the source\\nmotion. In this paper, we address both these challenges. We build a methodology\\nto semi-automatically collect a dataset of triplets in the form of (i) a source\\nmotion, (ii) a target motion, and (iii) an edit text, and create the new\\nMotionFix dataset. Having access to such data allows us to train a conditional\\ndiffusion model, TMED, that takes both the source motion and the edit text as\\ninput. We further build various baselines trained only on text-motion pairs\\ndatasets, and show superior performance of our model trained on triplets. We\\nintroduce new retrieval-based metrics for motion editing and establish a new\\nbenchmark on the evaluation set of MotionFix. Our results are encouraging,\\npaving the way for further research on finegrained motion generation. Code and\\nmodels will be made publicly available.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.00712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.00712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是三维运动编辑。给定三维人体动作和所需修改的文字描述,我们的目标是生成文字描述的编辑动作。我们面临的挑战包括缺乏训练数据,以及如何设计一个能忠实编辑源动作的模型。在本文中,我们将解决这两个难题。我们建立了一种半自动收集三元组数据集的方法:(i) 源动作、(ii) 目标动作和 (iii) 编辑文本,并创建新的动作修复数据集。有了这些数据,我们就可以训练一个条件扩散模型 TMED,该模型将源运动和编辑文本作为输入。我们进一步建立了仅在文本-动作对数据集上训练的各种基线,并展示了我们在三元组上训练的模型的卓越性能。我们为动作编辑引入了新的基于检索的指标,并在 MotionFix 的评估集上建立了新的基准。我们的结果令人鼓舞,为进一步研究精细运动生成铺平了道路。代码和模型将公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MotionFix: Text-Driven 3D Human Motion Editing
The focus of this paper is 3D motion editing. Given a 3D human motion and a textual description of the desired modification, our goal is to generate an edited motion as described by the text. The challenges include the lack of training data and the design of a model that faithfully edits the source motion. In this paper, we address both these challenges. We build a methodology to semi-automatically collect a dataset of triplets in the form of (i) a source motion, (ii) a target motion, and (iii) an edit text, and create the new MotionFix dataset. Having access to such data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input. We further build various baselines trained only on text-motion pairs datasets, and show superior performance of our model trained on triplets. We introduce new retrieval-based metrics for motion editing and establish a new benchmark on the evaluation set of MotionFix. Our results are encouraging, paving the way for further research on finegrained motion generation. Code and models will be made publicly available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GaussianHeads: End-to-End Learning of Drivable Gaussian Head Avatars from Coarse-to-fine Representations A Missing Data Imputation GAN for Character Sprite Generation Visualizing Temporal Topic Embeddings with a Compass Playground v3: Improving Text-to-Image Alignment with Deep-Fusion Large Language Models Phys3DGS: Physically-based 3D Gaussian Splatting for Inverse Rendering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1