Jun Yin, Xiaodan Li, Feng Guan, Pengfei Li, Guang Yang
{"title":"激光增材制造 V 型槽连接新型 Ti65 钛合金的微观结构与高温性能研究","authors":"Jun Yin, Xiaodan Li, Feng Guan, Pengfei Li, Guang Yang","doi":"10.1007/s12666-024-03416-7","DOIUrl":null,"url":null,"abstract":"<p>Ti65 is a novel high-temperature titanium alloy tailored for use in the 650 °C temperature range. Its processing difficulties present substantial challenges to conventional manufacturing methods, compelling an exploration of alternative techniques. This study adopts laser additive manufacturing to join V-grooved Ti65 alloy specimens, thoroughly examining their microstructure and mechanical aptitude. Ultrasonic testing underscores the 90 ° V-groove’s integrity, showing no signs of porosity or unfused anomalies. Microstructural analysis reveals a distinct α lamellar configuration throughout the junction region, interface, and base matrix, accompanied by the emergence of Ti<sub>3</sub>Sn and Si<sub>3</sub>Ti<sub>2</sub>Zr<sub>3</sub> silicide phases. Tensile assays conducted at room temperature suggest the V-groove connections outperform the additive-manufactured Ti65 alloy in strength. Contrarily, at elevated temperatures of 650 °C, the tensile strength surpasses that in the vertical orientation yet falls short of the horizontal, with notable declines in both fracture elongation and sectional contraction relative to the additive counterparts. Although there is a decrement in endurance strength, the material shows a promising creep resistance.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"36 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Microstructure and High-Temperature Performance of Novel Ti65 Titanium Alloy with V-Groove Connection in Laser Additive Manufacturing\",\"authors\":\"Jun Yin, Xiaodan Li, Feng Guan, Pengfei Li, Guang Yang\",\"doi\":\"10.1007/s12666-024-03416-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ti65 is a novel high-temperature titanium alloy tailored for use in the 650 °C temperature range. Its processing difficulties present substantial challenges to conventional manufacturing methods, compelling an exploration of alternative techniques. This study adopts laser additive manufacturing to join V-grooved Ti65 alloy specimens, thoroughly examining their microstructure and mechanical aptitude. Ultrasonic testing underscores the 90 ° V-groove’s integrity, showing no signs of porosity or unfused anomalies. Microstructural analysis reveals a distinct α lamellar configuration throughout the junction region, interface, and base matrix, accompanied by the emergence of Ti<sub>3</sub>Sn and Si<sub>3</sub>Ti<sub>2</sub>Zr<sub>3</sub> silicide phases. Tensile assays conducted at room temperature suggest the V-groove connections outperform the additive-manufactured Ti65 alloy in strength. Contrarily, at elevated temperatures of 650 °C, the tensile strength surpasses that in the vertical orientation yet falls short of the horizontal, with notable declines in both fracture elongation and sectional contraction relative to the additive counterparts. Although there is a decrement in endurance strength, the material shows a promising creep resistance.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03416-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03416-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
Ti65 是一种新型高温钛合金,专为在 650 °C 温度范围内使用而定制。其加工难度给传统制造方法带来了巨大挑战,迫使人们探索替代技术。本研究采用激光快速成型技术连接 V 形槽 Ti65 合金试样,对其微观结构和机械性能进行了深入研究。超声波测试强调了 90 ° V 形槽的完整性,未发现气孔或未熔合异常的迹象。微观结构分析表明,在整个接合区、界面和基体基质中存在明显的 α 层状结构,同时还出现了 Ti3Sn 和 Si3Ti2Zr3 硅化物相。室温下进行的拉伸试验表明,V 型槽连接的强度优于添加剂制造的 Ti65 合金。相反,在 650 °C 的高温下,垂直方向的拉伸强度超过了水平方向,而断裂伸长率和断面收缩率则明显低于添加剂制造的同类产品。虽然耐久强度有所下降,但材料显示出良好的抗蠕变性。
Research on Microstructure and High-Temperature Performance of Novel Ti65 Titanium Alloy with V-Groove Connection in Laser Additive Manufacturing
Ti65 is a novel high-temperature titanium alloy tailored for use in the 650 °C temperature range. Its processing difficulties present substantial challenges to conventional manufacturing methods, compelling an exploration of alternative techniques. This study adopts laser additive manufacturing to join V-grooved Ti65 alloy specimens, thoroughly examining their microstructure and mechanical aptitude. Ultrasonic testing underscores the 90 ° V-groove’s integrity, showing no signs of porosity or unfused anomalies. Microstructural analysis reveals a distinct α lamellar configuration throughout the junction region, interface, and base matrix, accompanied by the emergence of Ti3Sn and Si3Ti2Zr3 silicide phases. Tensile assays conducted at room temperature suggest the V-groove connections outperform the additive-manufactured Ti65 alloy in strength. Contrarily, at elevated temperatures of 650 °C, the tensile strength surpasses that in the vertical orientation yet falls short of the horizontal, with notable declines in both fracture elongation and sectional contraction relative to the additive counterparts. Although there is a decrement in endurance strength, the material shows a promising creep resistance.
期刊介绍:
Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering.
Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.