大数据分析投资与损失准备金准确性:来自美国财产责任保险业的证据

Xin Che
{"title":"大数据分析投资与损失准备金准确性:来自美国财产责任保险业的证据","authors":"Xin Che","doi":"10.1057/s41288-024-00336-x","DOIUrl":null,"url":null,"abstract":"<p>This study explores the impact of big data analytics investment on loss reserve accuracy in the U.S. property-liability insurance industry. Utilising a dataset of 1243 insurers from 2002 to 2016, we find a significant association between higher investment in big data analytics and more accurate loss reserve estimates. Our analysis distinguishes between over-reserving and under-reserving behaviours, revealing that big data analytics contributes to the reduction of both. The study employs entropy balancing, internal instrumental variable estimation and errors-in-variables regressions to enhance the robustness of the findings. This research not only fills a gap in the academic literature but also provides practical implications for enhancing the precision of loss reserve estimates through technological investments.</p>","PeriodicalId":75009,"journal":{"name":"The Geneva papers on risk and insurance. Issues and practice","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investment in big data analytics and loss reserve accuracy: evidence from the U.S. property-liability insurance industry\",\"authors\":\"Xin Che\",\"doi\":\"10.1057/s41288-024-00336-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the impact of big data analytics investment on loss reserve accuracy in the U.S. property-liability insurance industry. Utilising a dataset of 1243 insurers from 2002 to 2016, we find a significant association between higher investment in big data analytics and more accurate loss reserve estimates. Our analysis distinguishes between over-reserving and under-reserving behaviours, revealing that big data analytics contributes to the reduction of both. The study employs entropy balancing, internal instrumental variable estimation and errors-in-variables regressions to enhance the robustness of the findings. This research not only fills a gap in the academic literature but also provides practical implications for enhancing the precision of loss reserve estimates through technological investments.</p>\",\"PeriodicalId\":75009,\"journal\":{\"name\":\"The Geneva papers on risk and insurance. Issues and practice\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Geneva papers on risk and insurance. Issues and practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1057/s41288-024-00336-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Geneva papers on risk and insurance. Issues and practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1057/s41288-024-00336-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了大数据分析投资对美国财产责任保险业损失准备金准确性的影响。利用 2002 年至 2016 年间 1243 家保险公司的数据集,我们发现在大数据分析方面的较高投资与更准确的损失准备金估算之间存在显著关联。我们的分析区分了过度准备金和准备金不足行为,发现大数据分析有助于减少这两种行为。研究采用了熵平衡、内部工具变量估计和变量误差回归等方法,以增强研究结果的稳健性。这项研究不仅填补了学术文献的空白,还为通过技术投资提高损失准备金估算的精确度提供了实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investment in big data analytics and loss reserve accuracy: evidence from the U.S. property-liability insurance industry

This study explores the impact of big data analytics investment on loss reserve accuracy in the U.S. property-liability insurance industry. Utilising a dataset of 1243 insurers from 2002 to 2016, we find a significant association between higher investment in big data analytics and more accurate loss reserve estimates. Our analysis distinguishes between over-reserving and under-reserving behaviours, revealing that big data analytics contributes to the reduction of both. The study employs entropy balancing, internal instrumental variable estimation and errors-in-variables regressions to enhance the robustness of the findings. This research not only fills a gap in the academic literature but also provides practical implications for enhancing the precision of loss reserve estimates through technological investments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microinsurance research: status quo and future research directions Investment in big data analytics and loss reserve accuracy: evidence from the U.S. property-liability insurance industry Actuarial premium calculation for beekeeping insurance in Turkiye Discretionary decisions in capital requirements under Solvency II Technology investment and insurer efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1