考虑固结行为的薄基岩厚土层深部采矿区地表沉降预测方法

IF 4.8 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Natural Resources Research Pub Date : 2024-08-03 DOI:10.1007/s11053-024-10395-5
Jiachen Wang, Shanxi Wu, Zhaohui Wang, Shenyi Zhang, Boyuan Cheng, Huashun Xie
{"title":"考虑固结行为的薄基岩厚土层深部采矿区地表沉降预测方法","authors":"Jiachen Wang, Shanxi Wu, Zhaohui Wang, Shenyi Zhang, Boyuan Cheng, Huashun Xie","doi":"10.1007/s11053-024-10395-5","DOIUrl":null,"url":null,"abstract":"<p>Among the various hazards induced by underground coal mining, surface subsidence tends to cause structural damage to the ground. Therefore, accurate prediction and evaluation of surface subsidence are significant for ensuring mining security and sustainable development. Traditional methods like the probability integral method provide effective predictions. However, these methods do not take into account the consolidation behavior of thick soil layers. In this study, based on the principle of superposition, an improved probability integral method that includes surface subsidence caused by rock layer movement and the consolidation behavior of thick soil layers is developed. The proposed method was applied in the Zhaogu No. 2 coal mine, located in the Jiaozuo mining area. Utilizing unmanned surface vehicle measurement technology, it was found that the maximum subsidence values of the two survey lines were 5.441 m and 4.842 m, with maximum subsidence rate of 62.9 mm/day at observation points. Experimental tests have shown that surface subsidence in deep mining areas with thin bedrock and thick soil layers exhibited a large subsidence coefficient and a wide range of subsidence, closely related to the consolidation behavior of thick soil layers. After verification, compared to the probability integral method, the improved probability integral method incorporating soil consolidation showed a 14.7% reduction in average error and a 22% reduction in maximum error. Therefore, the improved probability integral method proposed can be a very promising tool for forecasting and evaluating potential geohazards in coal mining areas.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"299 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Prediction Method for Surface Subsidence at Deep Mining Areas with Thin Bedrock and Thick Soil Layer Considering Consolidation Behavior\",\"authors\":\"Jiachen Wang, Shanxi Wu, Zhaohui Wang, Shenyi Zhang, Boyuan Cheng, Huashun Xie\",\"doi\":\"10.1007/s11053-024-10395-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among the various hazards induced by underground coal mining, surface subsidence tends to cause structural damage to the ground. Therefore, accurate prediction and evaluation of surface subsidence are significant for ensuring mining security and sustainable development. Traditional methods like the probability integral method provide effective predictions. However, these methods do not take into account the consolidation behavior of thick soil layers. In this study, based on the principle of superposition, an improved probability integral method that includes surface subsidence caused by rock layer movement and the consolidation behavior of thick soil layers is developed. The proposed method was applied in the Zhaogu No. 2 coal mine, located in the Jiaozuo mining area. Utilizing unmanned surface vehicle measurement technology, it was found that the maximum subsidence values of the two survey lines were 5.441 m and 4.842 m, with maximum subsidence rate of 62.9 mm/day at observation points. Experimental tests have shown that surface subsidence in deep mining areas with thin bedrock and thick soil layers exhibited a large subsidence coefficient and a wide range of subsidence, closely related to the consolidation behavior of thick soil layers. After verification, compared to the probability integral method, the improved probability integral method incorporating soil consolidation showed a 14.7% reduction in average error and a 22% reduction in maximum error. Therefore, the improved probability integral method proposed can be a very promising tool for forecasting and evaluating potential geohazards in coal mining areas.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"299 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10395-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10395-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在地下采煤引发的各种危害中,地表沉降往往会对地面结构造成破坏。因此,准确预测和评估地表沉降对确保采矿安全和可持续发展意义重大。概率积分法等传统方法可以提供有效的预测。然而,这些方法没有考虑到厚土层的固结行为。本研究基于叠加原理,开发了一种改进的概率积分法,其中包括岩层运动引起的地表沉降和厚土层的固结行为。所提出的方法被应用于焦作矿区的赵固二号煤矿。利用无人地表车测量技术,发现两条测量线的最大下沉值分别为 5.441 米和 4.842 米,观测点的最大下沉速率为 62.9 毫米/天。实验测试表明,基岩薄、土层厚的深部采空区地表沉降表现出沉降系数大、沉降范围广的特点,这与厚土层的固结行为密切相关。经过验证,与概率积分法相比,包含土壤固结的改进概率积分法的平均误差减少了 14.7%,最大误差减少了 22%。因此,所提出的改进概率积分法可以作为一种非常有前途的工具,用于预测和评估煤矿开采区潜在的地质灾害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Prediction Method for Surface Subsidence at Deep Mining Areas with Thin Bedrock and Thick Soil Layer Considering Consolidation Behavior

Among the various hazards induced by underground coal mining, surface subsidence tends to cause structural damage to the ground. Therefore, accurate prediction and evaluation of surface subsidence are significant for ensuring mining security and sustainable development. Traditional methods like the probability integral method provide effective predictions. However, these methods do not take into account the consolidation behavior of thick soil layers. In this study, based on the principle of superposition, an improved probability integral method that includes surface subsidence caused by rock layer movement and the consolidation behavior of thick soil layers is developed. The proposed method was applied in the Zhaogu No. 2 coal mine, located in the Jiaozuo mining area. Utilizing unmanned surface vehicle measurement technology, it was found that the maximum subsidence values of the two survey lines were 5.441 m and 4.842 m, with maximum subsidence rate of 62.9 mm/day at observation points. Experimental tests have shown that surface subsidence in deep mining areas with thin bedrock and thick soil layers exhibited a large subsidence coefficient and a wide range of subsidence, closely related to the consolidation behavior of thick soil layers. After verification, compared to the probability integral method, the improved probability integral method incorporating soil consolidation showed a 14.7% reduction in average error and a 22% reduction in maximum error. Therefore, the improved probability integral method proposed can be a very promising tool for forecasting and evaluating potential geohazards in coal mining areas.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Resources Research
Natural Resources Research Environmental Science-General Environmental Science
CiteScore
11.90
自引率
11.10%
发文量
151
期刊介绍: This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.
期刊最新文献
Enhanced Lithology Classification Using an Interpretable SHAP Model Integrating Semi-Supervised Contrastive Learning and Transformer with Well Logging Data A Novel Framework for Optimizing the Prediction of Areas Favorable to Porphyry-Cu Mineralization: Combination of Ant Colony and Grid Search Optimization Algorithms with Support Vector Machines Small-Sample InSAR Time-Series Data Prediction Method Based on Generative Models Exploring the Dynamic Evolution of Shallow and Deep Coal Nanopore Structures Under Acidic Fracturing Fluids Using Synchrotron Radiation Small-Angle X-Ray Scattering A Novel Approach for Enhancing Geologically Aligned Fusion of Multiple Geophysical Inverse Models in the Porphyry-Cu Deposit of Zaftak, Kerman, Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1