Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Tariq Aziz, Metab Alharbi
{"title":"通过修正的反向度拓扑指数预测心血管药物理化特性的数学模型。","authors":"Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Tariq Aziz, Metab Alharbi","doi":"10.1140/epje/s10189-024-00446-3","DOIUrl":null,"url":null,"abstract":"<p>Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure–property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.</p>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"47 8","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling for prediction of physicochemical characteristics of cardiovascular drugs via modified reverse degree topological indices\",\"authors\":\"Micheal Arockiaraj, A. Berin Greeni, A. R. Abul Kalaam, Tariq Aziz, Metab Alharbi\",\"doi\":\"10.1140/epje/s10189-024-00446-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure–property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.</p>\",\"PeriodicalId\":790,\"journal\":{\"name\":\"The European Physical Journal E\",\"volume\":\"47 8\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal E\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epje/s10189-024-00446-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-024-00446-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Mathematical modeling for prediction of physicochemical characteristics of cardiovascular drugs via modified reverse degree topological indices
Global health concerns persist due to the multifaceted nature of heart diseases, which include lifestyle choices, genetic predispositions, and emerging post-COVID complications like myocarditis and pericarditis. This broadens the spectrum of cardiovascular ailments to encompass conditions such as coronary artery disease, heart failure, arrhythmias, and valvular disorders. Timely interventions, including lifestyle modifications and regular medications such as antiplatelets, beta-blockers, angiotensin-converting enzyme inhibitors, antiarrhythmics, and vasodilators, are pivotal in managing these conditions. In drug development, topological indices play a critical role, offering cost-effective computational and predictive tools. This study explores modified reverse degree topological indices, highlighting their adjustable parameters that actively shape the degree sequences of molecular drugs. This feature makes the approach suitable for datasets with unique physicochemical properties, distinguishing it from traditional methods that rely on fixed degree approaches. In our investigation, we examine a dataset of 30 drug compounds, including sotagliflozin, dapagliflozin, dobutamine, etc., which are used in the treatment of cardiovascular diseases. Through the structural analysis, we utilize modified reverse degree indices to develop quantitative structure–property relationship (QSPR) models, aiming to unveil essential understandings of their characteristics for drug development. Furthermore, we compare our QSPR models against the degree-based models, clearly demonstrating the superior effectiveness inherent in our proposed method.
期刊介绍:
EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems.
Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics.
Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter.
Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research.
The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.