SENSITIVE TO FREEZING2 对多孔菌在酸性条件下的生长至关重要。

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Journal of Plant Research Pub Date : 2024-11-01 Epub Date: 2024-08-04 DOI:10.1007/s10265-024-01564-x
Shinsuke Shimizu, Koichi Hori, Kimitsune Ishizaki, Hiroyuki Ohta, Mie Shimojima
{"title":"SENSITIVE TO FREEZING2 对多孔菌在酸性条件下的生长至关重要。","authors":"Shinsuke Shimizu, Koichi Hori, Kimitsune Ishizaki, Hiroyuki Ohta, Mie Shimojima","doi":"10.1007/s10265-024-01564-x","DOIUrl":null,"url":null,"abstract":"<p><p>Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha. TGDG is synthesized by galactolipid: galactolipid galactosyltransferase [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]. We analyzed the subcellular localization and GGGT activity of two M. polymorpha SFR2 homologs (MpGGGT1 and MpGGGT2, each as a GFP-fusion protein) using a transient expression system in Nicotiana benthamiana leaves and found that MpGGGT1-GFP localized in the chloroplast envelope membrane. We produced mutants Mpgggt1 and Mpgggt2 and found that TGDG did not accumulate in Mpgggt1 upon treatment of the thallus with acetic acid. Moreover, growth of Mpgggt1 mutants was impaired by acetic acid treatment. Microscopy revealed that the acetic acid treatment of M. polymorpha plants damaged intracellular membranes. The fact that the effect was similar for wild-type and Mpgggt1 plants suggested that MpGGGT has a role in recovery from damage. These results indicate that MpGGGT plays a crucial role in M. polymorpha growth under conditions of acid stress, which may have been encountered during the ancient terrestrial colonization of plants.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"1115-1126"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525325/pdf/","citationCount":"0","resultStr":"{\"title\":\"SENSITIVE TO FREEZING2 is crucial for growth of Marchantia polymorpha under acidic conditions.\",\"authors\":\"Shinsuke Shimizu, Koichi Hori, Kimitsune Ishizaki, Hiroyuki Ohta, Mie Shimojima\",\"doi\":\"10.1007/s10265-024-01564-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha. TGDG is synthesized by galactolipid: galactolipid galactosyltransferase [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]. We analyzed the subcellular localization and GGGT activity of two M. polymorpha SFR2 homologs (MpGGGT1 and MpGGGT2, each as a GFP-fusion protein) using a transient expression system in Nicotiana benthamiana leaves and found that MpGGGT1-GFP localized in the chloroplast envelope membrane. We produced mutants Mpgggt1 and Mpgggt2 and found that TGDG did not accumulate in Mpgggt1 upon treatment of the thallus with acetic acid. Moreover, growth of Mpgggt1 mutants was impaired by acetic acid treatment. Microscopy revealed that the acetic acid treatment of M. polymorpha plants damaged intracellular membranes. The fact that the effect was similar for wild-type and Mpgggt1 plants suggested that MpGGGT has a role in recovery from damage. These results indicate that MpGGGT plays a crucial role in M. polymorpha growth under conditions of acid stress, which may have been encountered during the ancient terrestrial colonization of plants.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"1115-1126\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525325/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01564-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01564-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

陆生植物进化出了许多系统来适应各种环境压力。在种子植物中,低聚半乳糖脂的合成参与了对冷冻和脱水的耐受,但在非维管束植物中还没有进行过分析。在这里,我们分析了马钱子(Marchantia polymorpha)中三聚半乳糖二酰甘油(TGDG)的合成。TGDG 由半乳糖脂:半乳糖脂半乳糖基转移酶 [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]合成。我们在拟南芥叶片中使用瞬时表达系统分析了两个 M. polymorpha SFR2 同源物(MpGGGT1 和 MpGGGT2,各自为 GFP 融合蛋白)的亚细胞定位和 GGGT 活性,发现 MpGGGT1-GFP 定位于叶绿体包膜。我们制作了突变体 Mpgggt1 和 Mpgggt2,发现用醋酸处理叶柄时,TGDG 不会在 Mpgggt1 中积累。此外,醋酸处理会影响 Mpgggt1 突变体的生长。显微镜检查发现,醋酸处理 M. polymorpha 植物会破坏细胞内膜。野生型植物和 Mpgggt1 植物受到的影响相似,这表明 MpGGGT 在从损伤中恢复方面发挥了作用。这些结果表明,MpGGGT 对多甲藻在酸胁迫条件下的生长起着至关重要的作用,这种情况可能在植物远古陆地殖民时期就已经遇到过。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SENSITIVE TO FREEZING2 is crucial for growth of Marchantia polymorpha under acidic conditions.

Land plants have evolved many systems to adapt to a wide range of environmental stresses. In seed plants, oligogalactolipid synthesis is involved in tolerance to freezing and dehydration, but it has not been analyzed in non-vascular plants. Here we analyzed trigalactosyldiacylglycerol (TGDG) synthesis in Marchantia polymorpha. TGDG is synthesized by galactolipid: galactolipid galactosyltransferase [GGGT; SENSITIVE TO FREEZING2 (SFR2) in Arabidopsis]. We analyzed the subcellular localization and GGGT activity of two M. polymorpha SFR2 homologs (MpGGGT1 and MpGGGT2, each as a GFP-fusion protein) using a transient expression system in Nicotiana benthamiana leaves and found that MpGGGT1-GFP localized in the chloroplast envelope membrane. We produced mutants Mpgggt1 and Mpgggt2 and found that TGDG did not accumulate in Mpgggt1 upon treatment of the thallus with acetic acid. Moreover, growth of Mpgggt1 mutants was impaired by acetic acid treatment. Microscopy revealed that the acetic acid treatment of M. polymorpha plants damaged intracellular membranes. The fact that the effect was similar for wild-type and Mpgggt1 plants suggested that MpGGGT has a role in recovery from damage. These results indicate that MpGGGT plays a crucial role in M. polymorpha growth under conditions of acid stress, which may have been encountered during the ancient terrestrial colonization of plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Plant Research
Journal of Plant Research 生物-植物科学
CiteScore
5.40
自引率
3.60%
发文量
59
审稿时长
1 months
期刊介绍: The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology. The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.
期刊最新文献
Phenotypic plasticity does not prevent impairment of aboveground biomass production due to increased light and water deficit in Dimorphandra exaltata, an endangered species. Exploring sugar allocation and metabolic shifts in cassava plants infected with Cassava common mosaic virus (CsCMV) under long-day photoperiod: diel changes in source and sink leaves. Generation of viable hypomorphic and null mutant plants via CRISPR-Cas9 targeting mRNA splicing sites. Correction to: Identification and functional analysis of the Dof transcription factor genes in sugar beet. Comparative transcriptome reveals lignin biosynthesis being the key molecular pathway regulating oilseed rape growth treated by SiO2 NPs and biochar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1