Alexander C Bashore, Chenyi Xue, Eunyoung Kim, Hanying Yan, Lucie Y Zhu, Huize Pan, Michael Kissner, Leila S Ross, Hanrui Zhang, Mingyao Li, Muredach P Reilly
{"title":"心血管疾病风险状态下的单核细胞多模态图谱分析","authors":"Alexander C Bashore, Chenyi Xue, Eunyoung Kim, Hanying Yan, Lucie Y Zhu, Huize Pan, Michael Kissner, Leila S Ross, Hanrui Zhang, Mingyao Li, Muredach P Reilly","doi":"10.1161/CIRCRESAHA.124.324457","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized.</p><p><strong>Methods: </strong>We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes.</p><p><strong>Results: </strong>This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCII<sup>hi</sup> (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII<sup>+</sup>CD275<sup>+</sup> MHCII<sup>hi</sup>, CD42b<sup>+</sup> monocyte-platelet aggregates, CD16<sup>+</sup>CD99<sup>-</sup> nonclassical monocytes, and CD99<sup>+</sup> classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol.</p><p><strong>Conclusions: </strong>This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.</p>","PeriodicalId":10147,"journal":{"name":"Circulation research","volume":null,"pages":null},"PeriodicalIF":16.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monocyte Single-Cell Multimodal Profiling in Cardiovascular Disease Risk States.\",\"authors\":\"Alexander C Bashore, Chenyi Xue, Eunyoung Kim, Hanying Yan, Lucie Y Zhu, Huize Pan, Michael Kissner, Leila S Ross, Hanrui Zhang, Mingyao Li, Muredach P Reilly\",\"doi\":\"10.1161/CIRCRESAHA.124.324457\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized.</p><p><strong>Methods: </strong>We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes.</p><p><strong>Results: </strong>This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCII<sup>hi</sup> (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII<sup>+</sup>CD275<sup>+</sup> MHCII<sup>hi</sup>, CD42b<sup>+</sup> monocyte-platelet aggregates, CD16<sup>+</sup>CD99<sup>-</sup> nonclassical monocytes, and CD99<sup>+</sup> classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol.</p><p><strong>Conclusions: </strong>This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.</p>\",\"PeriodicalId\":10147,\"journal\":{\"name\":\"Circulation research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11430373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Circulation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1161/CIRCRESAHA.124.324457\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Circulation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1161/CIRCRESAHA.124.324457","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
背景:单核细胞是一种重要的先天性免疫系统细胞类型,具有平衡和免疫调节功能。历史上,人们通过细胞表面 CD14 和 CD16 的表达来识别它们。然而,最近的单细胞研究发现,它们的异质性比以前认识到的要大得多:我们利用细胞转录组索引和表位测序(cellular indexing of transcriptomes and epitopes by sequencing)以及单细胞 RNA 测序来描述 437 126 个单核细胞的全面转录和表型图谱:结果:这一高维多模式方法发现了大量表型多样性和功能独特的亚群,包括 IFN 反应性、MHCIIhi、单核细胞-血小板聚集以及非经典单核细胞、经典单核细胞的几个亚群。通过流式细胞术,我们验证了 MHCII+CD275+ MHCIIhi、CD42b+ 单核细胞-血小板聚集体、CD16+CD99- 非典型单核细胞和 CD99+ 经典单核细胞的存在。每个亚群都表现出独特的特征、发育轨迹、转录调控和组织分布。此外,还发现了与心血管疾病风险因素(包括种族、吸烟和高脂血症)相关的改变。此外,在胆固醇升高的小鼠模型中重现了高脂血症的影响:这项综合的跨物种比较分析为比较病理条件下单核细胞的改变提供了一个新的视角,并为了解心血管疾病中单核细胞驱动机制以及单核细胞亚群靶向疗法的潜力提供了见解。
Monocyte Single-Cell Multimodal Profiling in Cardiovascular Disease Risk States.
Background: Monocytes are a critical innate immune system cell type that serves homeostatic and immunoregulatory functions. They have been identified historically by the cell surface expression of CD14 and CD16. However, recent single-cell studies have revealed that they are much more heterogeneous than previously realized.
Methods: We utilized cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-cell RNA sequencing to describe the comprehensive transcriptional and phenotypic landscape of 437 126 monocytes.
Results: This high-dimensional multimodal approach identified vast phenotypic diversity and functionally distinct subsets, including IFN-responsive, MHCIIhi (major histocompatibility complex class II), monocyte-platelet aggregates, as well as nonclassical, and several subpopulations of classical monocytes. Using flow cytometry, we validated the existence of MHCII+CD275+ MHCIIhi, CD42b+ monocyte-platelet aggregates, CD16+CD99- nonclassical monocytes, and CD99+ classical monocytes. Each subpopulation exhibited unique characteristics, developmental trajectories, transcriptional regulation, and tissue distribution. In addition, alterations associated with cardiovascular disease risk factors, including race, smoking, and hyperlipidemia were identified. Moreover, the effect of hyperlipidemia was recapitulated in mouse models of elevated cholesterol.
Conclusions: This integrative and cross-species comparative analysis provides a new perspective on the comparison of alterations in monocytes in pathological conditions and offers insights into monocyte-driven mechanisms in cardiovascular disease and the potential for monocyte subpopulation targeted therapies.
期刊介绍:
Circulation Research is a peer-reviewed journal that serves as a forum for the highest quality research in basic cardiovascular biology. The journal publishes studies that utilize state-of-the-art approaches to investigate mechanisms of human disease, as well as translational and clinical research that provide fundamental insights into the basis of disease and the mechanism of therapies.
Circulation Research has a broad audience that includes clinical and academic cardiologists, basic cardiovascular scientists, physiologists, cellular and molecular biologists, and cardiovascular pharmacologists. The journal aims to advance the understanding of cardiovascular biology and disease by disseminating cutting-edge research to these diverse communities.
In terms of indexing, Circulation Research is included in several prominent scientific databases, including BIOSIS, CAB Abstracts, Chemical Abstracts, Current Contents, EMBASE, and MEDLINE. This ensures that the journal's articles are easily discoverable and accessible to researchers in the field.
Overall, Circulation Research is a reputable publication that attracts high-quality research and provides a platform for the dissemination of important findings in basic cardiovascular biology and its translational and clinical applications.