{"title":"通过分子对接、MD 模拟和组织病理学证据研究黄柏素对视黄醇诱导的帕金森病斑马鱼模型的抗帕金森潜力:针对 MAO、炎症和氧化应激标记物。","authors":"","doi":"10.1016/j.cbpc.2024.109997","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, <em>In silico</em> evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of −6.5 and −10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of −36.04 ± 55.21 and −56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In <em>In vitro</em> studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC<sub>50</sub> value of 22.68 ± 0.5 μg/ml. <em>In vivo</em> studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (<em>p</em> < 0.001) and social interaction (<em>p</em> < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (<em>p</em> < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.</p></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antiparkinson potential of khellin on retinone-induced Parkinson's disease in a zebrafish model: targeting MAO, inflammatory, and oxidative stress markers with molecular docking, MD simulations, and histopathology evidence\",\"authors\":\"\",\"doi\":\"10.1016/j.cbpc.2024.109997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, <em>In silico</em> evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of −6.5 and −10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of −36.04 ± 55.21 and −56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In <em>In vitro</em> studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC<sub>50</sub> value of 22.68 ± 0.5 μg/ml. <em>In vivo</em> studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (<em>p</em> < 0.001) and social interaction (<em>p</em> < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (<em>p</em> < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.</p></div>\",\"PeriodicalId\":10602,\"journal\":{\"name\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative Biochemistry and Physiology C-toxicology & Pharmacology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1532045624001650\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045624001650","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Antiparkinson potential of khellin on retinone-induced Parkinson's disease in a zebrafish model: targeting MAO, inflammatory, and oxidative stress markers with molecular docking, MD simulations, and histopathology evidence
In this study, the antiparkinson effect of khellin (KL) on rotenone-induced Parkinson's disease (PD) was examined in zebrafish. Initially, In silico evaluations, such as drug likeness and ADME/T analysis, confirmed the pharmacological viability of KL. Molecular docking and molecular dynamics (MD) analysis revealed stable binding interactions between KL and monamine oxidase B (MAO-B). Molecular docking results for KL and pioglitazone (CCl) revealed binding energies of −6.5 and −10.4 kcal/mol, respectively. Later, molecular dynamics (MD) studies were performed to assess the stability of these complexes, which yielded binding energies of −36.04 ± 55.21 and −56.2 ± 80.63 kJ/mol for KL and CCl, respectively. These results suggest that KL exhibits considerable binding affinity for MAO-B. In In vitro studies, according to the DPPH free radical scavenging assay, KL exhibited significant antioxidant effects, indicating that it can promote redox balance with an IC50 value of 22.68 ± 0.5 μg/ml. In vivo studies and evaluation of locomotor activity, social interaction, histopathology and biochemical parameters were conducted in KL-treated zebrafish to measure SOD and GSH antioxidant activity, the oxidative stress marker malondialdehyde (MDA), the inflammatory marker myeloperoxidase (MPO) and MAO-B. However, while the locomotor and social interaction abilities of the rotenone-treated zebrafish were significantly reduced, KL treatment significantly improved locomotor activity (p < 0.001) and social interaction (p < 0.001). KL alleviated PD symptoms, as indicated by significant increases in SOD (p < 0.01), GSH (p < 0.001), MDA (p < 0.001), MAO-B (p < 0.001) and MPO (p < 0.001) in rotenone-induced PD fish (p<0.001) significantly reduced activities. Histopathological studies revealed that rotenone-induced brain hyperintensity and abnormal cellularity of the periventricular gray matter in the optic tectum were significantly reduced by KL treatment. This study provides a strong basis for developing KL as a new candidate for the treatment of Parkinson's disease, with the prospect of improved safety profiles and efficacy.
期刊介绍:
Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.