Jichun Jia, Hanyang Liang, Lihong Cheng, Jinsheng Xia, Xu Chen, Baojun Zhang, Fan Mu
{"title":"从导致苹果叶斑病的植物病原真菌 Alternaria alternata 中分离出的新型丝裂病毒的完整基因组序列。","authors":"Jichun Jia, Hanyang Liang, Lihong Cheng, Jinsheng Xia, Xu Chen, Baojun Zhang, Fan Mu","doi":"10.1007/s00705-024-06106-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel mitovirus, tentatively designated as \"Alternaria alternata mitovirus 2\" (AaMV2), was isolated from the fungus <i>Alternaria alternata</i> f. sp. <i>mali</i> causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus <i>Duamitovirus</i> within the family <i>Mitoviridae</i>. This is the first report of the complete genome sequence analysis of a mitovirus in <i>A. alternata</i>.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"169 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complete genome sequence of a novel mitovirus isolated from the phytopathogenic fungus Alternaria alternata causing apple leaf blotch\",\"authors\":\"Jichun Jia, Hanyang Liang, Lihong Cheng, Jinsheng Xia, Xu Chen, Baojun Zhang, Fan Mu\",\"doi\":\"10.1007/s00705-024-06106-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel mitovirus, tentatively designated as \\\"Alternaria alternata mitovirus 2\\\" (AaMV2), was isolated from the fungus <i>Alternaria alternata</i> f. sp. <i>mali</i> causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus <i>Duamitovirus</i> within the family <i>Mitoviridae</i>. This is the first report of the complete genome sequence analysis of a mitovirus in <i>A. alternata</i>.</p></div>\",\"PeriodicalId\":8359,\"journal\":{\"name\":\"Archives of Virology\",\"volume\":\"169 9\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00705-024-06106-3\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-024-06106-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
Complete genome sequence of a novel mitovirus isolated from the phytopathogenic fungus Alternaria alternata causing apple leaf blotch
In this study, a novel mitovirus, tentatively designated as "Alternaria alternata mitovirus 2" (AaMV2), was isolated from the fungus Alternaria alternata f. sp. mali causing apple leaf blotch disease. The complete genome of AaMV2 is 3,157 nucleotides in length, with an A+U content of 68.10%. The genome has a single large open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) protein with a molecular mass of 98.10 kDa. BLAST analysis revealed that AaMV2 has the highest sequence identity to Leptosphaeria biglobosa mitovirus 6, with 79.76% and 82.86% identity at the amino acid and nucleotide level, respectively. Phylogenetic analysis suggested that AaMV2 is a new member of the genus Duamitovirus within the family Mitoviridae. This is the first report of the complete genome sequence analysis of a mitovirus in A. alternata.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.