哺乳动物必需蛋白 TTF 1 DNA 结合域的结构特征。

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Bioscience Reports Pub Date : 2024-08-28 DOI:10.1042/BSR20240800
Gajender Singh, Abhinetra Jagdish Bhopale, Saloni Khatri, Prashant Prakash, Rajnish Kumar, Sukh Mahendra Singh, Samarendra Kumar Singh
{"title":"哺乳动物必需蛋白 TTF 1 DNA 结合域的结构特征。","authors":"Gajender Singh, Abhinetra Jagdish Bhopale, Saloni Khatri, Prashant Prakash, Rajnish Kumar, Sukh Mahendra Singh, Samarendra Kumar Singh","doi":"10.1042/BSR20240800","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues). Despite its critical role in various cellular processes, the physical structure of TTF1 remains unsolved. Attempts to purify the functional TTF1 protein have been unsuccessful till date. Therefore, we focused on characterizing the Myb domain of this essential protein. We started with predicting a 3-D model of the Myb domain using homology modelling, and ab-initio method. We then determined its stability through MD simulation in an explicit solvent. The model predicted is highly stable, which stabilizes at 200ns. To experimentally validate the computational model, we cloned and expressed the codon optimized Myb domain into a bacterial expression vector and purified the protein to homogeneity. Further, characterization of the protein shows that, Myb domain is predominantly helical (65%) and is alone sufficient to bind the Sal Box DNA. This is the first-ever study to report a complete in silico model of the Myb domain, which is physically characterized. The above study will pave the way towards solving the atomic structure of this essential mammalian protein.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358750/pdf/","citationCount":"0","resultStr":"{\"title\":\"Structural characterization of DNA-binding domain of essential mammalian protein TTF 1.\",\"authors\":\"Gajender Singh, Abhinetra Jagdish Bhopale, Saloni Khatri, Prashant Prakash, Rajnish Kumar, Sukh Mahendra Singh, Samarendra Kumar Singh\",\"doi\":\"10.1042/BSR20240800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues). Despite its critical role in various cellular processes, the physical structure of TTF1 remains unsolved. Attempts to purify the functional TTF1 protein have been unsuccessful till date. Therefore, we focused on characterizing the Myb domain of this essential protein. We started with predicting a 3-D model of the Myb domain using homology modelling, and ab-initio method. We then determined its stability through MD simulation in an explicit solvent. The model predicted is highly stable, which stabilizes at 200ns. To experimentally validate the computational model, we cloned and expressed the codon optimized Myb domain into a bacterial expression vector and purified the protein to homogeneity. Further, characterization of the protein shows that, Myb domain is predominantly helical (65%) and is alone sufficient to bind the Sal Box DNA. This is the first-ever study to report a complete in silico model of the Myb domain, which is physically characterized. The above study will pave the way towards solving the atomic structure of this essential mammalian protein.</p>\",\"PeriodicalId\":8926,\"journal\":{\"name\":\"Bioscience Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11358750/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BSR20240800\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240800","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

转录终止因子 1(TTF1)是一种多功能哺乳动物蛋白,在 Pol I 介导的转录启动和终止、前 RNA 处理、染色质重塑、DNA 损伤修复和极性复制叉停滞等多种细胞过程中发挥着重要作用。它由两个不同的功能区组成:N 端调节区(1-445 aa)和 C 端催化区(445-859 aa)。位于 C 端的 Myb 结构域是一个保守的 DNA 结合结构域,跨度从 550 到 732 aa(183 个残基)。尽管 TTF1 在各种细胞过程中发挥着关键作用,但其物理结构仍未得到解决。迄今为止,纯化功能性 TTF1 蛋白的尝试尚未成功。因此,我们重点研究了这种重要蛋白质的 Myb 结构域。我们首先使用同源建模和非线性方法预测了 Myb 结构域的三维模型。 然后,我们在显式溶剂中通过 MD 模拟确定了它的稳定性。预测出的模型高度稳定,在 200ns 时稳定下来。为了在实验中验证计算模型,我们将经过密码子优化的 Myb 结构域克隆并表达到细菌表达载体中,并将蛋白质纯化至均一。此外,对蛋白质的表征显示,Myb结构域主要是螺旋结构(65%),仅此就足以与Sal Box DNA结合。这是有史以来第一份报告完整的 Myb 结构域硅模型的研究报告,该模型具有物理特征。上述研究将为解决这一哺乳动物重要蛋白质的原子结构问题铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural characterization of DNA-binding domain of essential mammalian protein TTF 1.

Transcription Termination Factor 1 (TTF1) is a multifunctional mammalian protein with vital roles in various cellular processes, including Pol I-mediated transcription initiation and termination, pre-rRNA processing, chromatin remodelling, DNA damage repair, and polar replication fork arrest. It comprises two distinct functional regions; the N-terminal regulatory region (1-445 aa), and the C-terminal catalytic region (445-859 aa). The Myb domain located at the C-terminal region is a conserved DNA binding domain spanning from 550 to 732 aa (183 residues). Despite its critical role in various cellular processes, the physical structure of TTF1 remains unsolved. Attempts to purify the functional TTF1 protein have been unsuccessful till date. Therefore, we focused on characterizing the Myb domain of this essential protein. We started with predicting a 3-D model of the Myb domain using homology modelling, and ab-initio method. We then determined its stability through MD simulation in an explicit solvent. The model predicted is highly stable, which stabilizes at 200ns. To experimentally validate the computational model, we cloned and expressed the codon optimized Myb domain into a bacterial expression vector and purified the protein to homogeneity. Further, characterization of the protein shows that, Myb domain is predominantly helical (65%) and is alone sufficient to bind the Sal Box DNA. This is the first-ever study to report a complete in silico model of the Myb domain, which is physically characterized. The above study will pave the way towards solving the atomic structure of this essential mammalian protein.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioscience Reports
Bioscience Reports 生物-细胞生物学
CiteScore
8.50
自引率
0.00%
发文量
380
审稿时长
6-12 weeks
期刊介绍: Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences. Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase. Articles are assessed on soundness, providing a home for valid findings and data. We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing: -new methodologies -tools and reagents to probe biological questions -mechanistic details -disease mechanisms -metabolic processes and their regulation -structure and function -bioenergetics
期刊最新文献
Inhibition of Norovirus GII.4 binding to HBGAs by Sargassum fusiforme polysaccharide. Genetic and epigenetic regulation of cortactin (CTTN) by inflammatory factors and mechanical stress in human lung endothelial cells. Clo-miR-14: a medicinally valued spice-derived miRNA with therapeutic implications in rheumatoid arthritis. Loss of cardiomyocyte-specific Adhesion G Protein Coupled Receptor G1 (ADGRG1/GPR56) promotes pressure overload-induced heart failure. Axonal neurotransmitter release in the regulation of myelination.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1