梗死周围皮层的微血管恢复是由小微血管驱动的,动脉规格化先于微血管恢复。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-08-07 DOI:10.1177/0271678X241270407
Nina Hagemann, Yachao Qi, Ayan Mohamud Yusuf, AnRan Li, Xiaoni Zhang, Philippa Spangenberg, Anthony Squire, Thorsten R Doeppner, Fengyan Jin, Shuo Zhao, Jianxu Chen, Axel Mosig, Matthias Gunzer, Dirk M Hermann
{"title":"梗死周围皮层的微血管恢复是由小微血管驱动的,动脉规格化先于微血管恢复。","authors":"Nina Hagemann, Yachao Qi, Ayan Mohamud Yusuf, AnRan Li, Xiaoni Zhang, Philippa Spangenberg, Anthony Squire, Thorsten R Doeppner, Fengyan Jin, Shuo Zhao, Jianxu Chen, Axel Mosig, Matthias Gunzer, Dirk M Hermann","doi":"10.1177/0271678X241270407","DOIUrl":null,"url":null,"abstract":"<p><p>Evaluation of microvascular networks was impeded until recently by the need of histological tissue sectioning, which precluded 3D analyses. Using light-sheet microscopy, we investigated microvascular network characteristics in the peri-infarct cortex of mice 3-56 days after transient middle cerebral artery occlusion. In animal subgroups, the sphingosine-1-phosphate analog FTY720 (Fingolimod) was administered starting 24 hours post-ischemia. Light-sheet microscopy revealed a striking pattern of microvascular changes in the peri-infarct cortex, that is, a loss of microvessels, which was most prominent after 7 days and followed by the reappearance of microvessels over 56 days which revealed an increased branching point density and shortened branches. Using a novel AI-based image analysis algorithm we found that the length density of microvessels expressing the arterial specification marker α-smooth muscle actin markedly increased in the peri-infarct cortex already at 7 days post-ischemia. The length and branch density of small microvessels, but not of intermediate or large microvessels increased above pre-ischemic levels within 14-56 days. FTY720 increased the length and branch density of small microvessels. This study demonstrates long-term alterations of microvascular architecture post-ischemia indicative of increased collateralization most notably of small microvessels. Light-sheet microscopy will greatly advance the assessment of microvascular responses to restorative stroke therapies.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arterial specification precedes microvascular restitution in the peri-infarct cortex that is driven by small microvessels.\",\"authors\":\"Nina Hagemann, Yachao Qi, Ayan Mohamud Yusuf, AnRan Li, Xiaoni Zhang, Philippa Spangenberg, Anthony Squire, Thorsten R Doeppner, Fengyan Jin, Shuo Zhao, Jianxu Chen, Axel Mosig, Matthias Gunzer, Dirk M Hermann\",\"doi\":\"10.1177/0271678X241270407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Evaluation of microvascular networks was impeded until recently by the need of histological tissue sectioning, which precluded 3D analyses. Using light-sheet microscopy, we investigated microvascular network characteristics in the peri-infarct cortex of mice 3-56 days after transient middle cerebral artery occlusion. In animal subgroups, the sphingosine-1-phosphate analog FTY720 (Fingolimod) was administered starting 24 hours post-ischemia. Light-sheet microscopy revealed a striking pattern of microvascular changes in the peri-infarct cortex, that is, a loss of microvessels, which was most prominent after 7 days and followed by the reappearance of microvessels over 56 days which revealed an increased branching point density and shortened branches. Using a novel AI-based image analysis algorithm we found that the length density of microvessels expressing the arterial specification marker α-smooth muscle actin markedly increased in the peri-infarct cortex already at 7 days post-ischemia. The length and branch density of small microvessels, but not of intermediate or large microvessels increased above pre-ischemic levels within 14-56 days. FTY720 increased the length and branch density of small microvessels. This study demonstrates long-term alterations of microvascular architecture post-ischemia indicative of increased collateralization most notably of small microvessels. Light-sheet microscopy will greatly advance the assessment of microvascular responses to restorative stroke therapies.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241270407\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241270407","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

直到最近,由于需要进行组织切片,因此无法进行三维分析,从而阻碍了对微血管网络的评估。我们利用光片显微镜研究了小鼠短暂性大脑中动脉闭塞 3-56 天后梗死周围皮层的微血管网络特征。在动物亚组中,从缺血后 24 小时开始给予鞘磷脂-1-磷酸类似物 FTY720(芬戈莫德)。光片显微镜显示了梗塞周围皮层微血管变化的显著模式,即微血管缺失,这在 7 天后最为突出,随后在 56 天内微血管重新出现,并显示出分支点密度增加和分支缩短。利用一种新颖的基于人工智能的图像分析算法,我们发现在缺血后7天,表达动脉规格化标记物α-平滑肌肌动蛋白的微血管长度密度在梗死周围皮层中已经明显增加。在缺血后 14-56 天内,小微血管的长度和分支密度增加,但中级或大型微血管的长度和分支密度没有超过缺血前的水平。FTY720 增加了小微血管的长度和分支密度。这项研究证明了缺血后微血管结构的长期改变,表明侧支增加,尤其是小微血管。光片显微镜将大大推动对中风恢复疗法的微血管反应的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arterial specification precedes microvascular restitution in the peri-infarct cortex that is driven by small microvessels.

Evaluation of microvascular networks was impeded until recently by the need of histological tissue sectioning, which precluded 3D analyses. Using light-sheet microscopy, we investigated microvascular network characteristics in the peri-infarct cortex of mice 3-56 days after transient middle cerebral artery occlusion. In animal subgroups, the sphingosine-1-phosphate analog FTY720 (Fingolimod) was administered starting 24 hours post-ischemia. Light-sheet microscopy revealed a striking pattern of microvascular changes in the peri-infarct cortex, that is, a loss of microvessels, which was most prominent after 7 days and followed by the reappearance of microvessels over 56 days which revealed an increased branching point density and shortened branches. Using a novel AI-based image analysis algorithm we found that the length density of microvessels expressing the arterial specification marker α-smooth muscle actin markedly increased in the peri-infarct cortex already at 7 days post-ischemia. The length and branch density of small microvessels, but not of intermediate or large microvessels increased above pre-ischemic levels within 14-56 days. FTY720 increased the length and branch density of small microvessels. This study demonstrates long-term alterations of microvascular architecture post-ischemia indicative of increased collateralization most notably of small microvessels. Light-sheet microscopy will greatly advance the assessment of microvascular responses to restorative stroke therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Sensitivity assessment of QSM+qBOLD (or QQ) in detecting elevated oxygen extraction fraction (OEF) in physiological change. Impact of intracranial hypertension and cerebral perfusion pressure on spreading depolarization. Retinal microvascular phenotypes can track small vessel disease burden and CPAP treatment effectiveness in obstructive sleep apnoea. Static autoregulation in humans. Cerebral blood flow regulation and cognitive performance in hypertension.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1