Tongjian Yang, Yihua Chen, Xiaozhou Luo, Jay D Keasling, Keqiang Fan, Guohui Pan
{"title":"开发以启动子为中心的强大基因表达工具的简单有效策略","authors":"Tongjian Yang, Yihua Chen, Xiaozhou Luo, Jay D Keasling, Keqiang Fan, Guohui Pan","doi":"10.1021/acssynbio.4c00092","DOIUrl":null,"url":null,"abstract":"<p><p>Promoter-centric genetic tools play a crucial role in controlling gene expression for various applications, such as strain engineering and synthetic biology studies. Hence, a critical need persists for the development of robust gene expression tools. <i>Streptomyces</i> are well-known prolific producers of natural products and exceptional surrogate hosts for the production of high-value chemical compounds and enzymes. In this study, we reported a straightforward and effective strategy for the creation of potent gene expression tools. This was primarily achieved by introducing an additional -35-like motif upstream of the original -35 region of the promoter, coupled with the integration of a palindromic <i>cis</i>-element into the 5'-UTR region. This approach has generated a collection of robust constitutive and inducible gene expression tools tailored for <i>Streptomyces</i>. Of particular note, the fully activated <u>o</u>xytetracycline-inducible gene expression system containing an engineered <u><i>k</i></u><i>asO</i>p* promoter (<i>OK</i>) exhibited nearly an order of magnitude greater activity compared to the well-established high-strength promoter <i>kasO</i>p* under the tested conditions, establishing itself as a powerful gene expression system for <i>Streptomyces</i>. This strategy is expected to be applicable in modifying various other promoters to acquire robust gene expression tools, as evidenced by the enhancement observed in the other two promoters, <i>PL</i> and <i>P21</i> in this study. Moreover, the effectiveness of these tools has been demonstrated through the augmented production of transglutaminase and daptomycin. The gene expression tools established in this study, alongside those anticipated in forthcoming research, are positioned to markedly advance pathway engineering and synthetic biology investigations in <i>Streptomyces</i> and other microbial strains.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple and Effective Strategy for the Development of Robust Promoter-Centric Gene Expression Tools.\",\"authors\":\"Tongjian Yang, Yihua Chen, Xiaozhou Luo, Jay D Keasling, Keqiang Fan, Guohui Pan\",\"doi\":\"10.1021/acssynbio.4c00092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Promoter-centric genetic tools play a crucial role in controlling gene expression for various applications, such as strain engineering and synthetic biology studies. Hence, a critical need persists for the development of robust gene expression tools. <i>Streptomyces</i> are well-known prolific producers of natural products and exceptional surrogate hosts for the production of high-value chemical compounds and enzymes. In this study, we reported a straightforward and effective strategy for the creation of potent gene expression tools. This was primarily achieved by introducing an additional -35-like motif upstream of the original -35 region of the promoter, coupled with the integration of a palindromic <i>cis</i>-element into the 5'-UTR region. This approach has generated a collection of robust constitutive and inducible gene expression tools tailored for <i>Streptomyces</i>. Of particular note, the fully activated <u>o</u>xytetracycline-inducible gene expression system containing an engineered <u><i>k</i></u><i>asO</i>p* promoter (<i>OK</i>) exhibited nearly an order of magnitude greater activity compared to the well-established high-strength promoter <i>kasO</i>p* under the tested conditions, establishing itself as a powerful gene expression system for <i>Streptomyces</i>. This strategy is expected to be applicable in modifying various other promoters to acquire robust gene expression tools, as evidenced by the enhancement observed in the other two promoters, <i>PL</i> and <i>P21</i> in this study. Moreover, the effectiveness of these tools has been demonstrated through the augmented production of transglutaminase and daptomycin. The gene expression tools established in this study, alongside those anticipated in forthcoming research, are positioned to markedly advance pathway engineering and synthetic biology investigations in <i>Streptomyces</i> and other microbial strains.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00092\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00092","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
A Simple and Effective Strategy for the Development of Robust Promoter-Centric Gene Expression Tools.
Promoter-centric genetic tools play a crucial role in controlling gene expression for various applications, such as strain engineering and synthetic biology studies. Hence, a critical need persists for the development of robust gene expression tools. Streptomyces are well-known prolific producers of natural products and exceptional surrogate hosts for the production of high-value chemical compounds and enzymes. In this study, we reported a straightforward and effective strategy for the creation of potent gene expression tools. This was primarily achieved by introducing an additional -35-like motif upstream of the original -35 region of the promoter, coupled with the integration of a palindromic cis-element into the 5'-UTR region. This approach has generated a collection of robust constitutive and inducible gene expression tools tailored for Streptomyces. Of particular note, the fully activated oxytetracycline-inducible gene expression system containing an engineered kasOp* promoter (OK) exhibited nearly an order of magnitude greater activity compared to the well-established high-strength promoter kasOp* under the tested conditions, establishing itself as a powerful gene expression system for Streptomyces. This strategy is expected to be applicable in modifying various other promoters to acquire robust gene expression tools, as evidenced by the enhancement observed in the other two promoters, PL and P21 in this study. Moreover, the effectiveness of these tools has been demonstrated through the augmented production of transglutaminase and daptomycin. The gene expression tools established in this study, alongside those anticipated in forthcoming research, are positioned to markedly advance pathway engineering and synthetic biology investigations in Streptomyces and other microbial strains.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.