基于离子-偶极子相互作用的无溶剂共价有机框架单离子导体,用于全固态有机锂电池。

IF 26.6 1区 材料科学 Q1 Engineering Nano-Micro Letters Pub Date : 2024-08-09 DOI:10.1007/s40820-024-01485-3
Zhongping Li, Kyeong-Seok Oh, Jeong-Min Seo, Wenliang Qin, Soohyoung Lee, Lipeng Zhai, Changqing Li, Jong-Beom Baek, Sang-Young Lee
{"title":"基于离子-偶极子相互作用的无溶剂共价有机框架单离子导体,用于全固态有机锂电池。","authors":"Zhongping Li,&nbsp;Kyeong-Seok Oh,&nbsp;Jeong-Min Seo,&nbsp;Wenliang Qin,&nbsp;Soohyoung Lee,&nbsp;Lipeng Zhai,&nbsp;Changqing Li,&nbsp;Jong-Beom Baek,&nbsp;Sang-Young Lee","doi":"10.1007/s40820-024-01485-3","DOIUrl":null,"url":null,"abstract":"<div><p>Single-ion conductors based on covalent organic frameworks (COFs) have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility. However, the sluggish Li<sup>+</sup> conduction has hindered their practical applications. Here, we present a class of solvent-free COF single-ion conductors (Li-COF@P) based on weak ion–dipole interaction as opposed to traditional strong ion–ion interaction. The ion (Li<sup>+</sup> from the COF)–dipole (oxygen from poly(ethylene glycol) diacrylate embedded in the COF pores) interaction in the Li-COF@P promotes ion dissociation and Li<sup>+</sup> migration via directional ionic channels. Driven by this single-ion transport behavior, the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance (88.3% after 2000 cycles) in organic batteries (Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone (Me<sub>2</sub>BBQ) cathode) under ambient operating conditions, highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315829/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion–Dipole Interaction for All-Solid-State Lithium Organic Batteries\",\"authors\":\"Zhongping Li,&nbsp;Kyeong-Seok Oh,&nbsp;Jeong-Min Seo,&nbsp;Wenliang Qin,&nbsp;Soohyoung Lee,&nbsp;Lipeng Zhai,&nbsp;Changqing Li,&nbsp;Jong-Beom Baek,&nbsp;Sang-Young Lee\",\"doi\":\"10.1007/s40820-024-01485-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Single-ion conductors based on covalent organic frameworks (COFs) have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility. However, the sluggish Li<sup>+</sup> conduction has hindered their practical applications. Here, we present a class of solvent-free COF single-ion conductors (Li-COF@P) based on weak ion–dipole interaction as opposed to traditional strong ion–ion interaction. The ion (Li<sup>+</sup> from the COF)–dipole (oxygen from poly(ethylene glycol) diacrylate embedded in the COF pores) interaction in the Li-COF@P promotes ion dissociation and Li<sup>+</sup> migration via directional ionic channels. Driven by this single-ion transport behavior, the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance (88.3% after 2000 cycles) in organic batteries (Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone (Me<sub>2</sub>BBQ) cathode) under ambient operating conditions, highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315829/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01485-3\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01485-3","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

基于共价有机框架(COFs)的单离子导体因其结构独特性和化学多功能性而备受关注,成为目前流行的无机离子导体的潜在替代品。然而,Li+传导迟缓阻碍了它们的实际应用。在此,我们提出了一类基于弱离子-偶极子相互作用而非传统的强离子-离子相互作用的无溶剂 COF 单离子导体(Li-COF@P)。Li-COF@P 中的离子(COF 中的 Li+)-偶极子(COF 孔隙中嵌入的聚乙二醇二丙烯酸酯中的氧)相互作用促进了离子解离和 Li+ 通过定向离子通道迁移。在这种单离子迁移行为的驱动下,Li-COF@P 在锂金属电极上实现了可逆的锂镀层/剥离,并在有机电池(锂金属阳极|||5,5'-二甲基-2,2'-双对苯醌(Me2BBQ)阴极)中实现了在环境操作条件下的稳定循环性能(2000 次循环后为 88.3%),这凸显了 Li-COF@P 在全固态有机电池中的电化学可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Solvent-Free Covalent Organic Framework Single-Ion Conductor Based on Ion–Dipole Interaction for All-Solid-State Lithium Organic Batteries

Single-ion conductors based on covalent organic frameworks (COFs) have garnered attention as a potential alternative to currently prevalent inorganic ion conductors owing to their structural uniqueness and chemical versatility. However, the sluggish Li+ conduction has hindered their practical applications. Here, we present a class of solvent-free COF single-ion conductors (Li-COF@P) based on weak ion–dipole interaction as opposed to traditional strong ion–ion interaction. The ion (Li+ from the COF)–dipole (oxygen from poly(ethylene glycol) diacrylate embedded in the COF pores) interaction in the Li-COF@P promotes ion dissociation and Li+ migration via directional ionic channels. Driven by this single-ion transport behavior, the Li-COF@P enables reversible Li plating/stripping on Li-metal electrodes and stable cycling performance (88.3% after 2000 cycles) in organic batteries (Li metal anode||5,5’-dimethyl-2,2’-bis-p-benzoquinone (Me2BBQ) cathode) under ambient operating conditions, highlighting the electrochemical viability of the Li-COF@P for all-solid-state organic batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
期刊最新文献
Wafer-Scale Ag2S-Based Memristive Crossbar Arrays with Ultra-Low Switching-Energies Reaching Biological Synapses Bioinspired Ultrasensitive Flexible Strain Sensors for Real-Time Wireless Detection of Liquid Leakage Direct Photolithography of WOx Nanoparticles for High-Resolution Non-Emissive Displays Exploration of Gas-Dependent Self-Adaptive Reconstruction Behavior of Cu2O for Electrochemical CO2 Conversion to Multi-Carbon Products Flexible Strain Sensors with Ultra-High Sensitivity and Wide Range Enabled by Crack-Modulated Electrical Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1