{"title":"蛋白中溶菌酶-转铁蛋白复合物的分离及其成分的协同作用","authors":"Youji Shimazaki, Shinya Enomoto, Saki Ishiko","doi":"10.1007/s12010-024-05037-8","DOIUrl":null,"url":null,"abstract":"<p><p>A complex of ovotransferrin and lysozyme was directly isolated from egg white using an anti-transferrin antibody-immobilized membrane after antiserum proteins were separated by non-denaturing two-dimensional electrophoresis and transferred onto a membrane. The complex retained lysozyme activity that catalyzes the breakdown of peptidoglycans in the bacterial cell wall at the β1-4 bond between N-acetylmuramic acid and N-acetylglucosamine residues. The activity of the purified lysozyme was suppressed to 6.4% in the presence of 1 μmol Fe<sup>2+</sup>, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 58%. The activity of the purified lysozyme was suppressed to 35% in the presence of 10 nmol Fe<sup>3+</sup>, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 66%. Furthermore, the bacteriolytic activity against Bacillus subtilis of egg white with reduced glycoproteins such as ovotransferrin was assessed, and the bacteriolytic activity was found to be suppressed in the presence of Fe<sup>2+</sup> and Fe<sup>3+</sup>. This suppression was ions, thereby alleviating the inhibition of lysozyme activity by iron ions. A complex of ovotransferrin and lysozyme is efficient because ovotransferrin effectively captures iron ions near lysozyme. Thus, protein complexes containing enzymes can be applied to control their activity.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Separation of Lysozyme-Ovotransferrin Complexes and the Cooperative Role of Their Components in Egg White.\",\"authors\":\"Youji Shimazaki, Shinya Enomoto, Saki Ishiko\",\"doi\":\"10.1007/s12010-024-05037-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A complex of ovotransferrin and lysozyme was directly isolated from egg white using an anti-transferrin antibody-immobilized membrane after antiserum proteins were separated by non-denaturing two-dimensional electrophoresis and transferred onto a membrane. The complex retained lysozyme activity that catalyzes the breakdown of peptidoglycans in the bacterial cell wall at the β1-4 bond between N-acetylmuramic acid and N-acetylglucosamine residues. The activity of the purified lysozyme was suppressed to 6.4% in the presence of 1 μmol Fe<sup>2+</sup>, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 58%. The activity of the purified lysozyme was suppressed to 35% in the presence of 10 nmol Fe<sup>3+</sup>, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 66%. Furthermore, the bacteriolytic activity against Bacillus subtilis of egg white with reduced glycoproteins such as ovotransferrin was assessed, and the bacteriolytic activity was found to be suppressed in the presence of Fe<sup>2+</sup> and Fe<sup>3+</sup>. This suppression was ions, thereby alleviating the inhibition of lysozyme activity by iron ions. A complex of ovotransferrin and lysozyme is efficient because ovotransferrin effectively captures iron ions near lysozyme. Thus, protein complexes containing enzymes can be applied to control their activity.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05037-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05037-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Separation of Lysozyme-Ovotransferrin Complexes and the Cooperative Role of Their Components in Egg White.
A complex of ovotransferrin and lysozyme was directly isolated from egg white using an anti-transferrin antibody-immobilized membrane after antiserum proteins were separated by non-denaturing two-dimensional electrophoresis and transferred onto a membrane. The complex retained lysozyme activity that catalyzes the breakdown of peptidoglycans in the bacterial cell wall at the β1-4 bond between N-acetylmuramic acid and N-acetylglucosamine residues. The activity of the purified lysozyme was suppressed to 6.4% in the presence of 1 μmol Fe2+, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 58%. The activity of the purified lysozyme was suppressed to 35% in the presence of 10 nmol Fe3+, whereas that of the mixture of the purified lysozyme and ovotransferrin was maintained at 66%. Furthermore, the bacteriolytic activity against Bacillus subtilis of egg white with reduced glycoproteins such as ovotransferrin was assessed, and the bacteriolytic activity was found to be suppressed in the presence of Fe2+ and Fe3+. This suppression was ions, thereby alleviating the inhibition of lysozyme activity by iron ions. A complex of ovotransferrin and lysozyme is efficient because ovotransferrin effectively captures iron ions near lysozyme. Thus, protein complexes containing enzymes can be applied to control their activity.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.