智能并行自动低温电子断层扫描。

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-08-08 DOI:10.1038/s41592-024-02373-9
Fabian Eisenstein, Yoshiyuki Fukuda, Radostin Danev
{"title":"智能并行自动低温电子断层扫描。","authors":"Fabian Eisenstein, Yoshiyuki Fukuda, Radostin Danev","doi":"10.1038/s41592-024-02373-9","DOIUrl":null,"url":null,"abstract":"In situ cryo-electron tomography enables investigation of macromolecules in their native cellular environment. Samples have become more readily available owing to recent software and hardware advancements. Data collection, however, still requires an experienced operator and appreciable microscope time to carefully select targets for high-throughput tilt series acquisition. Here, we developed smart parallel automated cryo-electron tomography (SPACEtomo), a workflow using machine learning approaches to fully automate the entire cryo-electron tomography process, including lamella detection, biological feature segmentation, target selection and parallel tilt series acquisition, all without the need for human intervention. This degree of automation will be essential for obtaining statistically relevant datasets and high-resolution structures of macromolecules in their native context. Smart parallel automated cryo-electron tomography (SPACEtomo) uses deep learning to fully automate data collection from lamella detection to tilt series acquisition, driving the future of cryo-ET through improved throughput and statistics.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":null,"pages":null},"PeriodicalIF":36.1000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart parallel automated cryo-electron tomography\",\"authors\":\"Fabian Eisenstein, Yoshiyuki Fukuda, Radostin Danev\",\"doi\":\"10.1038/s41592-024-02373-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In situ cryo-electron tomography enables investigation of macromolecules in their native cellular environment. Samples have become more readily available owing to recent software and hardware advancements. Data collection, however, still requires an experienced operator and appreciable microscope time to carefully select targets for high-throughput tilt series acquisition. Here, we developed smart parallel automated cryo-electron tomography (SPACEtomo), a workflow using machine learning approaches to fully automate the entire cryo-electron tomography process, including lamella detection, biological feature segmentation, target selection and parallel tilt series acquisition, all without the need for human intervention. This degree of automation will be essential for obtaining statistically relevant datasets and high-resolution structures of macromolecules in their native context. Smart parallel automated cryo-electron tomography (SPACEtomo) uses deep learning to fully automate data collection from lamella detection to tilt series acquisition, driving the future of cryo-ET through improved throughput and statistics.\",\"PeriodicalId\":18981,\"journal\":{\"name\":\"Nature Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":36.1000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41592-024-02373-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-024-02373-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

原位低温电子断层扫描技术可以研究原生细胞环境中的大分子。由于最近软件和硬件的进步,样品变得更容易获得。然而,数据采集仍然需要经验丰富的操作人员和相当长的显微镜时间,以仔细选择目标进行高通量倾斜系列采集。在这里,我们开发了智能并行自动冷冻电子断层成像(SPACEtomo),这是一种利用机器学习方法实现整个冷冻电子断层成像过程完全自动化的工作流程,包括薄片检测、生物特征分割、目标选择和并行倾斜序列采集,所有这些都无需人工干预。这种自动化程度对于获得统计相关数据集和大分子在其原生环境中的高分辨率结构至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart parallel automated cryo-electron tomography
In situ cryo-electron tomography enables investigation of macromolecules in their native cellular environment. Samples have become more readily available owing to recent software and hardware advancements. Data collection, however, still requires an experienced operator and appreciable microscope time to carefully select targets for high-throughput tilt series acquisition. Here, we developed smart parallel automated cryo-electron tomography (SPACEtomo), a workflow using machine learning approaches to fully automate the entire cryo-electron tomography process, including lamella detection, biological feature segmentation, target selection and parallel tilt series acquisition, all without the need for human intervention. This degree of automation will be essential for obtaining statistically relevant datasets and high-resolution structures of macromolecules in their native context. Smart parallel automated cryo-electron tomography (SPACEtomo) uses deep learning to fully automate data collection from lamella detection to tilt series acquisition, driving the future of cryo-ET through improved throughput and statistics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Analyzing submicron spatial transcriptomics data at their original resolution Serialized on-grid lift-in sectioning for tomography (SOLIST) enables a biopsy at the nanoscale Research ethics matter Serial lift-out for in situ structural biology of multicellular specimens FICTURE: scalable segmentation-free analysis of submicron-resolution spatial transcriptomics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1