MFCC-CNN:与患者无关的癫痫发作预测模型

IF 2.7 4区 医学 Q2 CLINICAL NEUROLOGY Neurological Sciences Pub Date : 2024-12-01 Epub Date: 2024-08-09 DOI:10.1007/s10072-024-07718-y
Fan Zhang, Boyan Zhang, Siyuan Guo, Xinhong Zhang
{"title":"MFCC-CNN:与患者无关的癫痫发作预测模型","authors":"Fan Zhang, Boyan Zhang, Siyuan Guo, Xinhong Zhang","doi":"10.1007/s10072-024-07718-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.</p><p><strong>Methods: </strong>This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.</p><p><strong>Results: </strong>Experimental results showed that the proposed model obtained accuracy of 96 <math><mo>%</mo></math> , sensitivity of 92 <math><mo>%</mo></math> , specificity of 84 <math><mo>%</mo></math> and F1-score of 85 <math><mo>%</mo></math> for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.</p><p><strong>Conclusion: </strong>MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.</p>","PeriodicalId":19191,"journal":{"name":"Neurological Sciences","volume":" ","pages":"5897-5908"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MFCC-CNN: A patient-independent seizure prediction model.\",\"authors\":\"Fan Zhang, Boyan Zhang, Siyuan Guo, Xinhong Zhang\",\"doi\":\"10.1007/s10072-024-07718-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.</p><p><strong>Methods: </strong>This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.</p><p><strong>Results: </strong>Experimental results showed that the proposed model obtained accuracy of 96 <math><mo>%</mo></math> , sensitivity of 92 <math><mo>%</mo></math> , specificity of 84 <math><mo>%</mo></math> and F1-score of 85 <math><mo>%</mo></math> for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.</p><p><strong>Conclusion: </strong>MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.</p>\",\"PeriodicalId\":19191,\"journal\":{\"name\":\"Neurological Sciences\",\"volume\":\" \",\"pages\":\"5897-5908\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10072-024-07718-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10072-024-07718-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:自动预测癫痫发作是癫痫领域的一个主要目标。然而,不同患者脑电图(EEG)信号的高变异性限制了预测模型在临床应用中的使用:本文提出了一种与患者无关的癫痫发作预测模型,命名为 MFCC-CNN,以提高泛化能力。MFCC-CNN 模型引入了 Mel-Frequency Cepstrum Coefficients(MFCC)特征和线性预测倒频谱系数(LPCC)特征,这些特征集中在低频区域,包含更详细的信息。卷积神经网络(CNN)用于构建癫痫发作预测模型:实验结果表明,在 CNHB-MIT 数据集中的 24 个病例中,所提出的模型获得了 96 % 的准确率、92 % 的灵敏度、84 % 的特异性和 85 % 的 F1 分数。MFCC-CNN 模型的整体性能优于其他模型:结论:MFCC-CNN 模型无需针对不同患者进行特别定制。结论:MFCC-CNN 模型无需针对不同患者进行专门定制,作为一种与患者无关的癫痫发作预测模型,它具有良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MFCC-CNN: A patient-independent seizure prediction model.

Background: Automatic prediction of seizures is a major goal in the field of epilepsy. However, the high variability of Electroencephalogram (EEG) signals in different patients limits the use of prediction models in clinical applications.

Methods: This paper proposes a patient-independent seizure prediction model, named MFCC-CNN, to improve the generalization ability. MFCC-CNN model introduces Mel-Frequency Cepstrum Coefficients (MFCC) features and Linear Predictive Cepstral Coefficients (LPCC) features concentrated in the low frequency region, which contains more detailed information. Convolutional neural network (CNN) is used to construct a seizure prediction model.

Results: Experimental results showed that the proposed model obtained accuracy of 96 % , sensitivity of 92 % , specificity of 84 % and F1-score of 85 % for 24 cases in CNHB-MIT dataset. The overall performance of MFCC-CNN model is better than the other models.

Conclusion: MFCC-CNN model does not need to be specifically customized for different patients. As a patient-independent seizure prediction model, it has good generalization ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurological Sciences
Neurological Sciences 医学-临床神经学
CiteScore
6.10
自引率
3.00%
发文量
743
审稿时长
4 months
期刊介绍: Neurological Sciences is intended to provide a medium for the communication of results and ideas in the field of neuroscience. The journal welcomes contributions in both the basic and clinical aspects of the neurosciences. The official language of the journal is English. Reports are published in the form of original articles, short communications, editorials, reviews and letters to the editor. Original articles present the results of experimental or clinical studies in the neurosciences, while short communications are succinct reports permitting the rapid publication of novel results. Original contributions may be submitted for the special sections History of Neurology, Health Care and Neurological Digressions - a forum for cultural topics related to the neurosciences. The journal also publishes correspondence book reviews, meeting reports and announcements.
期刊最新文献
Correction to: Endovascular thrombectomy for ischemic stroke with large infarct, short‑ and long‑term outcomes: a meta‑analysis of 6 randomised control trials. Correction to: Clinical, electrophysiological, and genetic analysis of a family with two rare neuromuscular disorders: congenital myasthenic syndrome and hereditary polyneuropathy. Endovascular thrombectomy for ischemic stroke with large infarct, short- and long-term outcomes: a meta-analysis of 6 randomised control trials. Effect of intravenous thrombolysis before endovascular therapy on outcomes in acute ischemic stroke with large core: a systematic review and meta-analysis. Efficacy of pain management strategies in adults with Amyotrophic Lateral Sclerosis (ALS): A Systematic Review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1