Ethan J Redmond, James Ronald, Seth J Davis, Daphne Ezer
{"title":"单株组学揭示了无性繁殖向生殖转变过程中的转录变化级联。","authors":"Ethan J Redmond, James Ronald, Seth J Davis, Daphne Ezer","doi":"10.1093/plcell/koae226","DOIUrl":null,"url":null,"abstract":"<p><p>Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":"4594-4606"},"PeriodicalIF":10.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449079/pdf/","citationCount":"0","resultStr":"{\"title\":\"Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition.\",\"authors\":\"Ethan J Redmond, James Ronald, Seth J Davis, Daphne Ezer\",\"doi\":\"10.1093/plcell/koae226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.</p>\",\"PeriodicalId\":20186,\"journal\":{\"name\":\"Plant Cell\",\"volume\":\" \",\"pages\":\"4594-4606\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449079/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koae226\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koae226","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Single-plant-omics reveals the cascade of transcriptional changes during the vegetative-to-reproductive transition.
Plants undergo rapid developmental transitions, which occur contemporaneously with gradual changes in physiology. Moreover, individual plants within a population undergo developmental transitions asynchronously. Single-plant-omics has the potential to distinguish between transcriptional events that are associated with these binary and continuous processes. Furthermore, we can use single-plant-omics to order individual plants by their intrinsic biological age, providing a high-resolution transcriptional time series. We performed RNA-seq on leaves from a large population of wild-type Arabidopsis (Arabidopsis thaliana) during the vegetative-to-reproductive transition. Though most transcripts were differentially expressed between bolted and unbolted plants, some regulators were more closely associated with leaf size and biomass. Using a pseudotime inference algorithm, we determined that some senescence-associated processes, such as the reduction in ribosome biogenesis, were evident in the transcriptome before a bolt was visible. Even in this near-isogenic population, some variants are associated with developmental traits. These results support the use of single-plant-omics to uncover rapid transcriptional dynamics by exploiting developmental asynchrony.
期刊介绍:
Title: Plant Cell
Publisher:
Published monthly by the American Society of Plant Biologists (ASPB)
Produced by Sheridan Journal Services, Waterbury, VT
History and Impact:
Established in 1989
Within three years of publication, ranked first in impact among journals in plant sciences
Maintains high standard of excellence
Scope:
Publishes novel research of special significance in plant biology
Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution
Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience
Tenets:
Publish the most exciting, cutting-edge research in plant cellular and molecular biology
Provide rapid turnaround time for reviewing and publishing research papers
Ensure highest quality reproduction of data
Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.