{"title":"在迭代信念修正中表示状态","authors":"Paolo Liberatore","doi":"10.1016/j.artint.2024.104200","DOIUrl":null,"url":null,"abstract":"<div><p>Iterated belief revision requires information about the current beliefs. This information is represented by mathematical structures called doxastic states. Most literature concentrates on how to revise a doxastic state and neglects that it may exponentially grow. This problem is studied for the most common ways of storing a doxastic state. All four of them are able to store every doxastic state, but some do it in less space than others. In particular, the explicit representation (an enumeration of the current beliefs) is the more wasteful on space. The level representation (a sequence of propositional formulae) and the natural representation (a history of natural revisions) are more succinct than it. The lexicographic representation (a history of lexicographic revision) is even more succinct than them.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"336 ","pages":"Article 104200"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representing states in iterated belief revision\",\"authors\":\"Paolo Liberatore\",\"doi\":\"10.1016/j.artint.2024.104200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Iterated belief revision requires information about the current beliefs. This information is represented by mathematical structures called doxastic states. Most literature concentrates on how to revise a doxastic state and neglects that it may exponentially grow. This problem is studied for the most common ways of storing a doxastic state. All four of them are able to store every doxastic state, but some do it in less space than others. In particular, the explicit representation (an enumeration of the current beliefs) is the more wasteful on space. The level representation (a sequence of propositional formulae) and the natural representation (a history of natural revisions) are more succinct than it. The lexicographic representation (a history of lexicographic revision) is even more succinct than them.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"336 \",\"pages\":\"Article 104200\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S000437022400136X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000437022400136X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Iterated belief revision requires information about the current beliefs. This information is represented by mathematical structures called doxastic states. Most literature concentrates on how to revise a doxastic state and neglects that it may exponentially grow. This problem is studied for the most common ways of storing a doxastic state. All four of them are able to store every doxastic state, but some do it in less space than others. In particular, the explicit representation (an enumeration of the current beliefs) is the more wasteful on space. The level representation (a sequence of propositional formulae) and the natural representation (a history of natural revisions) are more succinct than it. The lexicographic representation (a history of lexicographic revision) is even more succinct than them.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.