{"title":"关于利用规则路径约束测量图数据库中的不一致性","authors":"John Grant , Francesco Parisi","doi":"10.1016/j.artint.2024.104197","DOIUrl":null,"url":null,"abstract":"<div><p>Real-world data are often inconsistent. Although a substantial amount of research has been done on measuring inconsistency, this research concentrated on knowledge bases formalized in propositional logic. Recently, inconsistency measures have been introduced for relational databases. However, nowadays, real-world information is always more frequently represented by graph-based structures which offer a more intuitive conceptualization than relational ones. In this paper, we explore inconsistency measures for graph databases with regular path constraints, a class of integrity constraints based on a well-known navigational language for graph data. In this context, we define several inconsistency measures dealing with specific elements contributing to inconsistency in graph databases. We also define some rationality postulates that are desirable properties for an inconsistency measure for graph databases. We analyze the compliance of each measure with each postulate and find various degrees of satisfaction; in fact, one of the measures satisfies all the postulates. Finally, we investigate the data and combined complexity of the calculation of all the measures as well as the complexity of deciding whether a measure is lower than, equal to, or greater than a given threshold. It turns out that for a majority of the measures these problems are tractable, while for the other different levels of intractability are exhibited.</p></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"335 ","pages":"Article 104197"},"PeriodicalIF":5.1000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0004370224001334/pdfft?md5=113adf90619058fb60d34c4ed866c0e0&pid=1-s2.0-S0004370224001334-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On measuring inconsistency in graph databases with regular path constraints\",\"authors\":\"John Grant , Francesco Parisi\",\"doi\":\"10.1016/j.artint.2024.104197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-world data are often inconsistent. Although a substantial amount of research has been done on measuring inconsistency, this research concentrated on knowledge bases formalized in propositional logic. Recently, inconsistency measures have been introduced for relational databases. However, nowadays, real-world information is always more frequently represented by graph-based structures which offer a more intuitive conceptualization than relational ones. In this paper, we explore inconsistency measures for graph databases with regular path constraints, a class of integrity constraints based on a well-known navigational language for graph data. In this context, we define several inconsistency measures dealing with specific elements contributing to inconsistency in graph databases. We also define some rationality postulates that are desirable properties for an inconsistency measure for graph databases. We analyze the compliance of each measure with each postulate and find various degrees of satisfaction; in fact, one of the measures satisfies all the postulates. Finally, we investigate the data and combined complexity of the calculation of all the measures as well as the complexity of deciding whether a measure is lower than, equal to, or greater than a given threshold. It turns out that for a majority of the measures these problems are tractable, while for the other different levels of intractability are exhibited.</p></div>\",\"PeriodicalId\":8434,\"journal\":{\"name\":\"Artificial Intelligence\",\"volume\":\"335 \",\"pages\":\"Article 104197\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001334/pdfft?md5=113adf90619058fb60d34c4ed866c0e0&pid=1-s2.0-S0004370224001334-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0004370224001334\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0004370224001334","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
On measuring inconsistency in graph databases with regular path constraints
Real-world data are often inconsistent. Although a substantial amount of research has been done on measuring inconsistency, this research concentrated on knowledge bases formalized in propositional logic. Recently, inconsistency measures have been introduced for relational databases. However, nowadays, real-world information is always more frequently represented by graph-based structures which offer a more intuitive conceptualization than relational ones. In this paper, we explore inconsistency measures for graph databases with regular path constraints, a class of integrity constraints based on a well-known navigational language for graph data. In this context, we define several inconsistency measures dealing with specific elements contributing to inconsistency in graph databases. We also define some rationality postulates that are desirable properties for an inconsistency measure for graph databases. We analyze the compliance of each measure with each postulate and find various degrees of satisfaction; in fact, one of the measures satisfies all the postulates. Finally, we investigate the data and combined complexity of the calculation of all the measures as well as the complexity of deciding whether a measure is lower than, equal to, or greater than a given threshold. It turns out that for a majority of the measures these problems are tractable, while for the other different levels of intractability are exhibited.
期刊介绍:
The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.