血清学检测的质量控制。

IF 3.2 3区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY Clinica Chimica Acta Pub Date : 2024-08-08 DOI:10.1016/j.cca.2024.119905
{"title":"血清学检测的质量控制。","authors":"","doi":"10.1016/j.cca.2024.119905","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><p>The quality control of serological assays remains controversial. The aim of this project was to describe the problems associated with a working model for controlling these assays and solutions, including using a source of well-defined targets and acceptable limits, a process to identify lot-to-lot reagent variation and an interpretation of the result that accounted for the clinical situation. False-negative results are problematic but can be reduced by identifying and comparing reagent lot variation with previous results.</p></div><div><h3>Methods</h3><p>The components of the Quality Assurance strategy are the following: Lot-to-lot reagent and calibrator variation assessment; dynamic, big-data approach to determine accurate targets and acceptable limits for manufacturer-provided QC material; negative QC monitoring process; use of commutable EQA with a sufficient method subgroup size to assess bias; clinical assessment of any statistically flagged error; and provision of support to the clinician for the interpretation of results.</p></div><div><h3>Results</h3><p>The model described has been used for twelve months, and acceptable variation has been maintained.</p></div><div><h3>Conclusions</h3><p>The paper presents a solution that emphasizes the early detection of reagent lot variation and patient risk rather than instrument control.</p><p>Reducing the risk of a false result to patients requires optimal assay quality control and an effective mechanism to support the clinician’s use of these results in diagnosis and monitoring. The problems of serological assays are well-known, but there remain few integrated solutions in the literature.</p></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality control for serological testing\",\"authors\":\"\",\"doi\":\"10.1016/j.cca.2024.119905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objectives</h3><p>The quality control of serological assays remains controversial. The aim of this project was to describe the problems associated with a working model for controlling these assays and solutions, including using a source of well-defined targets and acceptable limits, a process to identify lot-to-lot reagent variation and an interpretation of the result that accounted for the clinical situation. False-negative results are problematic but can be reduced by identifying and comparing reagent lot variation with previous results.</p></div><div><h3>Methods</h3><p>The components of the Quality Assurance strategy are the following: Lot-to-lot reagent and calibrator variation assessment; dynamic, big-data approach to determine accurate targets and acceptable limits for manufacturer-provided QC material; negative QC monitoring process; use of commutable EQA with a sufficient method subgroup size to assess bias; clinical assessment of any statistically flagged error; and provision of support to the clinician for the interpretation of results.</p></div><div><h3>Results</h3><p>The model described has been used for twelve months, and acceptable variation has been maintained.</p></div><div><h3>Conclusions</h3><p>The paper presents a solution that emphasizes the early detection of reagent lot variation and patient risk rather than instrument control.</p><p>Reducing the risk of a false result to patients requires optimal assay quality control and an effective mechanism to support the clinician’s use of these results in diagnosis and monitoring. The problems of serological assays are well-known, but there remain few integrated solutions in the literature.</p></div>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009898124021582\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124021582","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

目的:血清学检测的质量控制仍然存在争议。该项目的目的是描述与控制这些检测方法的工作模式相关的问题和解决方案,包括使用定义明确的目标和可接受限值的来源、识别批次间试剂差异的过程以及根据临床情况对结果的解释。假阴性结果是个问题,但可以通过识别试剂批次间的差异并与之前的结果进行比较来减少假阴性结果:质量保证策略的组成部分如下:方法:质量保证策略的组成部分如下:批次间试剂和校准物差异评估;动态大数据方法,以确定制造商提供的质控材料的准确目标和可接受限值;阴性质控监测流程;使用可换算的 EQA,并配备足够的方法子组规模以评估偏倚;对任何统计标记错误进行临床评估;以及为临床医生解释结果提供支持:结果:所述模型已使用 12 个月,并保持了可接受的差异:本文提出的解决方案强调及早发现试剂批次差异和患者风险,而不是仪器控制。要降低错误结果对患者造成的风险,就必须进行最佳的检测质量控制,并建立有效的机制,支持临床医生在诊断和监测中使用这些结果。血清学检测的问题众所周知,但文献中却鲜有综合解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quality control for serological testing

Objectives

The quality control of serological assays remains controversial. The aim of this project was to describe the problems associated with a working model for controlling these assays and solutions, including using a source of well-defined targets and acceptable limits, a process to identify lot-to-lot reagent variation and an interpretation of the result that accounted for the clinical situation. False-negative results are problematic but can be reduced by identifying and comparing reagent lot variation with previous results.

Methods

The components of the Quality Assurance strategy are the following: Lot-to-lot reagent and calibrator variation assessment; dynamic, big-data approach to determine accurate targets and acceptable limits for manufacturer-provided QC material; negative QC monitoring process; use of commutable EQA with a sufficient method subgroup size to assess bias; clinical assessment of any statistically flagged error; and provision of support to the clinician for the interpretation of results.

Results

The model described has been used for twelve months, and acceptable variation has been maintained.

Conclusions

The paper presents a solution that emphasizes the early detection of reagent lot variation and patient risk rather than instrument control.

Reducing the risk of a false result to patients requires optimal assay quality control and an effective mechanism to support the clinician’s use of these results in diagnosis and monitoring. The problems of serological assays are well-known, but there remain few integrated solutions in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Clinica Chimica Acta
Clinica Chimica Acta 医学-医学实验技术
CiteScore
10.10
自引率
2.00%
发文量
1268
审稿时长
23 days
期刊介绍: The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells. The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.
期刊最新文献
Kallmann syndrome: Diagnostics and management. Icteria interference for 34 clinical chemistry analytes on different analytical platforms: Method or analyzer dependent? Clinical implications of opioid parent-metabolite ratios. Identification of novel variants in hereditary spherocytosis patients by whole-exome sequencing. New practice of BCR::ABL1 standardization system based on p210 and p190 BCR::ABL1 reference materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1