器官芯片在疾病中的应用进展。

IF 1.6 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Organogenesis Pub Date : 2024-12-31 Epub Date: 2024-08-10 DOI:10.1080/15476278.2024.2386727
Qiao Geng, Yanyan Xu, Yang Hu, Lu Wang, Yi Wang, Zhimin Fan, Desong Kong
{"title":"器官芯片在疾病中的应用进展。","authors":"Qiao Geng, Yanyan Xu, Yang Hu, Lu Wang, Yi Wang, Zhimin Fan, Desong Kong","doi":"10.1080/15476278.2024.2386727","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the \"three mountains\" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in <i>vitro</i>, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.</p>","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"20 1","pages":"2386727"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318694/pdf/","citationCount":"0","resultStr":"{\"title\":\"Progress in the Application of Organoids-On-A-Chip in Diseases.\",\"authors\":\"Qiao Geng, Yanyan Xu, Yang Hu, Lu Wang, Yi Wang, Zhimin Fan, Desong Kong\",\"doi\":\"10.1080/15476278.2024.2386727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the \\\"three mountains\\\" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in <i>vitro</i>, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.</p>\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"20 1\",\"pages\":\"2386727\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318694/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2024.2386727\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2024.2386727","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/10 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着生命科学领域的飞速发展,传统的二维细胞培养和动物模型早已不能满足现代生物医学研究和新药开发的迫切需要。建立新一代的实验模型和研究模型,对于深入了解人类健康和疾病过程、开发有效的治疗措施具有重要意义。众所周知,研发周期长、风险大、成本高是当今新药研发面临的 "三座大山"。器官组织和片上器官技术可以在体外高度模拟和再现人体的生理环境和复杂反应,大大提高药物临床疗效预测的准确性,降低药物研发成本,避免药物试验动物模型的缺陷。因此,器官芯片在医学诊断和治疗方面具有巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Progress in the Application of Organoids-On-A-Chip in Diseases.

With the rapid development of the field of life sciences, traditional 2D cell culture and animal models have long been unable to meet the urgent needs of modern biomedical research and new drug development. Establishing a new generation of experimental models and research models is of great significance for deeply understanding human health and disease processes, and developing effective treatment measures. As is well known, long research and development cycles, high risks, and high costs are the "three mountains" facing the development of new drugs today. Organoids and organ-on-chips technology can highly simulate and reproduce the human physiological environment and complex reactions in vitro, greatly improving the accuracy of drug clinical efficacy prediction, reducing drug development costs, and avoiding the defects of drug testing animal models. Therefore, organ-on-chips have enormous potential in medical diagnosis and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Organogenesis
Organogenesis BIOCHEMISTRY & MOLECULAR BIOLOGY-DEVELOPMENTAL BIOLOGY
CiteScore
4.10
自引率
4.30%
发文量
6
审稿时长
>12 weeks
期刊介绍: Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes. The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering. The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.
期刊最新文献
Lipid Nanovesicle Platforms for Hepatocellular Carcinoma Precision Medicine Therapeutics: Progress and Perspectives. Exosomes derived from TNF-α-treated bone marrow mesenchymal stem cells ameliorate myocardial infarction injury in mice. Human Adipose Tissue-Derived Stromal Cells Ameliorate Adriamycin-Induced Nephropathy by Promoting Angiogenesis. A Review of the Risk Factors and Approaches to Prevention of Post-Reperfusion Syndrome During Liver Transplantation. Progress in the Application of Organoids-On-A-Chip in Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1