{"title":"多细胞系统中癌细胞电穿孔模拟研究。","authors":"Yu Zhang , Zhijun Luo , Yapeng Zhang , Fei Guo","doi":"10.1016/j.bioelechem.2024.108789","DOIUrl":null,"url":null,"abstract":"<div><p>Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.</p></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"160 ","pages":"Article 108789"},"PeriodicalIF":4.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation study on electroporation of cancer cells in multicellular system\",\"authors\":\"Yu Zhang , Zhijun Luo , Yapeng Zhang , Fei Guo\",\"doi\":\"10.1016/j.bioelechem.2024.108789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.</p></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"160 \",\"pages\":\"Article 108789\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539424001518\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539424001518","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本文采用网格输运网络法(MTNM)研究了单细胞和多细胞模型中正常细胞和癌细胞的电穿孔(EP)。模拟结果表明,在单细胞和多细胞模型中,癌细胞在纳秒脉冲电场(nsPEFs)的诱导下发生的局部电穿孔比相应的正常细胞更快、更明显。此外,多细胞模型的结果表明,在多细胞模型中存在单向邻近效应,即中心的细胞受到影响,其孔隙形成显著减少,但这种效应对系统边缘的细胞非常微弱。这意味着电场会选择性地杀死不同分布位置的细胞。这项工作可为癌细胞 EP 过程参数的选择提供指导。
Simulation study on electroporation of cancer cells in multicellular system
Electroporation (EP) of the normal cell and cancer cell both in single-cell and multicellular models was investigated by the meshed transport network method (MTNM) in this paper. The simulation results suggest that the cancer cell undergoes faster and more significant local EP than that of the corresponding normal cell induced by nanosecond pulsed electric fields (nsPEFs) both in single-cell and multicellular models. Furthermore, the results of the multicellular model indicate that there is a unidirectional neighboring effect in the multicellular model, meaning that cells at the center are affected and their pore formation is significantly reduced, but this effect is very weak for cells at the edges of the system. This means that the electric field selectively kills cells in different distribution locations. This work can provide guidance for the selection of parameters for the cancer cell EP process.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.